

City of Pittsburg Greenhouse Gas Emission Inventories Updated 2005 and 2016

> prepared for City of Pittsburg Environmental Services Dept 65 Civic Avenue Pittsburg, California 94565

> > prepared with the assistance of Rincon Consultants, Inc. 449 14th Street, Suite 303 Oakland, California 94612

> > > September 2019

Table of Contents

Introduction: Understanding the City of Pittsburg's Greenhouse Gas Emissions	1
Purpose of a Greenhouse Gas Emissions Inventory	1
Previous Citywide Inventory	2
Demographic Trends	2
Emissions Source Scopes	3
Emissions Source Sectors	3
Community-wide and Municipal Geographic Boundaries	4
Global Warming Potentials	4
Activity Data and Emission Factors	5
2005 Updated Community-wide Inventory	6
2005 Community-wide Inventory	6
Community Energy Use	8
2005 Updated Municipal Inventory	10
2016 Community-wide Inventory	12
2016 Community-wide Inventory	12
Community Energy Use	14
Community Transportation	15
Community Solid Waste	16
Community Water and Wastewater	17
2016 Municipal Inventory	19
Recent Greenhouse Gas Emissions Trend	21
Community-wide Emissions Changes, 2005 to 2016	21
Municipal Operation Emissions Changes, 2005 to 2016	21
Conclusion	23

Tables

Table 1	Community-wide Greenhouse Gas Emissions Inventory (2005)	7
Table 2	Community-wide Emissions by Scope (2005)	8
Table 3	Community-wide Energy Usage and Emissions (2005)	8
Table 4	Municipal Greenhouse Gas Emissions Inventory (2005)	11
Table 5	Community-wide Greenhouse Gas Emissions Inventory (2016)	13
Table 6	Community-wide Emissions by Scope (2016)	14
Table 7	Community-wide Energy Usage and Emissions (2016)	14
Table 8	Citywide Transportation Emissions and Vehicle Miles Traveled (2016)	16
Table 9	Community-Generated Solid Waste (2016)	17
Table 10	Community-Generated Alternative Daily Cover, Recycling and Biomass (2016)	17
Table 11	Water Emissions by Sourcing and Processing Step (2016)	17
Table 12	Water Supplied to Incorporated Community and Municipal Operations (2016)	18
Table 13	Municipal Greenhouse Gas Emissions Inventory (2016)	20
Table 14	Community Greenhouse Gas Emissions Inventory Comparison, 2005 to 2016	21
Table 15	Municipal Greenhouse Gas Emissions Inventory Comparison, 2005 to 2016	22

Figures

Figure 1	City of Pittsburg Incorporated Community Greenhouse Gas Emissions in 2005	6
Figure 2	Community-wide Energy Emissions in 2005	9
Figure 3	Municipal Operational Greenhouse Gas Emissions in 2005	10
Figure 4	City of Pittsburg Incorporated Community Greenhouse Gas Emissions in 2016	12
Figure 5	Electricity Sources of Emissions (2016)	15
Figure 6	Natural Gas Sources of Emissions (2016)	15
Figure 7	Transportation Sector Sources of Emissions (2016)	16
Figure 8	Community-wide Emissions from Solid Waste (2016)	18
Figure 9	Water Emissions by Sourcing and Processing Step (2016)	19
Figure 10	Municipal Operational Greenhouse Gas Emissions in 2016	19

Appendices

Appendix A	2016 Greenhouse Gas Emission Inventory Methodology and Calculations
Appendix B	2005 Greenhouse Gas Emission Inventory Methodology and Calculations

Introduction: Understanding the City of Pittsburg's Greenhouse Gas Emissions

Purpose of a Greenhouse Gas Emissions Inventory

Local governments play a fundamental role in reducing greenhouse gas (GHG) emissions. Local government policies can effectively reduce GHG emissions and can prepare communities for the potential impacts of climate change. Estimating GHG emissions enables governments to establish an emissions baseline, track emissions trends, identify the greatest sources of GHG emissions within their jurisdiction, and set targets for future reductions. Through such efforts, the City of Pittsburg can reduce GHG emissions at both the municipal (local government) and community level.

The City of Pittsburg has the power and ability to regulate most GHG emissions-generating activities that occur within the City. For example, the City can reduce energy consumption in municipal buildings, reduce fuel consumption by electrifying municipal fleet vehicles, and increase the amount of energy that is obtained from renewable energy sources. The City can also influence community-wide activities that generate GHG emissions, such as improving building codes, incentivizing alternative transportation options, and educating community members about their choices as consumers. This influence may be exercised directly through the City's authority over local land use planning and building standards, and indirectly through programs that encourage GHG reducing activities.

By quantifying the GHG emissions from municipal facilities and operations as well as for the community as a whole, this report provides an understanding of where the highest percentages of emissions in Pittsburg originate and where the greatest opportunities for emissions reductions exist. It also provides City decision-makers and the community with adequate information to inform policy decisions and provides a baseline against which future progress can be measured.

Community and municipal greenhouse gas (GHG) inventories are a fundamental tool to identify and quantify emissions sources from citywide activities of residents and the local government. The community and municipal inventories provide an understanding of what the major sources of GHG emissions are and the amount of GHG emissions associated with each. This informs the City on how to effectively develop strategies and measures to reduce emissions where the greatest opportunities for reductions exist. Additionally, it provides a baseline from which a business-asusual (BAU) emissions forecast can be established.

The baseline emissions inventory provides a means to forecast future emissions with new State GHG targets such as Assembly Bill (AB) 32 and Senate Bill (SB) 32. AB 32, the California Global Warming Solutions Act of 2006, codified a statewide goal of reducing GHG emissions to 1990 levels by 2020, essentially a 15% reduction below 2005 emission levels. SB 32 extended AB 32 in 2016 by requiring a statewide goal of reducing GHG emissions to 40 percent below 1990 levels by 2030. GHG inventories and GHG forecast allow a jurisdiction to measure progress towards meeting such State and local GHG emission reduction goals.

The 2016 City of Pittsburg inventory update allows the City to analyze emissions and gives the City the option of forecasting trends through 2050 with the most accurate, recent activity data available.

The citywide inventory provides a transparent methodology that can be utilized in future inventories to allow for a consistent comparison of the City of Pittsburg's change in emissions over time.¹

Previous Citywide Inventory

The City of Pittsburg conducted an initial GHG emissions inventory in 2008 for data year 2005 as a first step in complying with the ICLEI Local Governments for Sustainability's Cities for Climate Protection Program recommendations.² Pittsburg and fifteen other Contra Costa City Climate Leaders (4CL) cities joined this ICLEI program in 2007 to foster regional GHG reduction. The 2005 baseline inventory accounted for five community sources—industry, transportation, commercial energy, residential energy and waste—and six municipal sources—water, facility energy, vehicle fleet, employee commutes, streetlights and waste. The original 2005 inventory reported 4.4 million metric tons of citywide carbon dioxide-equivalent emissions (MT CO₂e), with nearly 91 percent due to industrial sources and 5.5 percent due to local and regional transportation. Of industrial emissions, natural gas power plants composed 88 percent of emissions.

The 2016 inventory is structured to reflect the sectors accounted for in 2005 to provide an accurate comparison of changes in emissions in the 11 intervening years. Because data sources were either inconsistent with currently accepted methodology or data was unavailable for portions of certain sectors in the original 2005 inventory—such as on-road vehicles, water and wastewater—this inventory update also includes recalculating emissions of some 2005 activity data and re-reporting emissions. Particularly, the original 2005 inventory did not include community-wide emissions from off-road vehicles and equipment, regionally-supplied water and wastewater. However, data and tools are now available to estimate these for 2005 in a consistent manner as for 2016. Revising and expanding previous calculations of certain sectors with newer tools will provide a more encompassing citywide emissions estimate.

Another difference from the original inventory is that the updated inventory no longer includes industrial sources over which the community has no control or authority. The original baseline inventory reported industrial energy as composing the vast majority of community-wide emissions. Due to new regulations, industrial energy data is unavailable past 2013. Removing this category ensures accurate analysis of changes in emissions over time and consistent methodology for future inventories, while focusing on community-generated emissions.

Demographic Trends

According to U.S. Census data, the population of the City of Pittsburg was 60,926 in 2005. By 2016, it had increased to 71,342, an increase of 17 percent. According to the California Employment Development Department, the employment population in 2005 is estimated to have been 28,922 and increased to 31,700 by 2016, an increase of nearly 10 percent. The total service population, including both residents and employees, increased 15 percent in the eleven years between the baseline and updated GHG emissions inventories. This growth should be taken into account when considering citywide and sectoral emissions trends.

¹ Refer to Appendix A for details.

² City of Pittsburg. 2008. 2005 Greenhouse Gas Emissions Baseline Inventory and Analysis.

http://www.ci.pittsburg.ca.us/Modules/ShowDocument.aspx?documentid=3166 Accessed June 2019.

Emissions Source Scopes

Emissions sources can be categorized by "scope" according to an entity's degree of control over the emissions source and the location of the source. Emissions sources are categorized as direct (Scope 1) or indirect (Scope 2 or Scope 3), in accordance with the World Resources Institute (WRI) and the World Business Council for Sustainable Development (WBCSD)'s *Greenhouse Gas Protocol Corporate Standard*. Direct emissions are those that occur at the end use location, such as natural gas combustion for building heating. Indirect emissions are those that occur at one location as a result of consumption at a separate location, such as emissions at a power plant resulting from residential electricity use.

Consistent with the 2005 inventory, the 2016 inventory sectors account for Scope 1, 2 and 3 emissions. Particularly, because of available data, Scope 3 community-wide off-road vehicles and equipment were added to the activity data for both inventory years.

- Scope 1. Direct GHG emissions from sources located within the jurisdictional boundaries (community or municipal operations), including emissions from vehicles' natural gas combustion in homes, businesses and operational facilities.
- Scope 2. Indirect GHG emissions associated with the consumption of electricity purchased from a utility provider which provides energy to other jurisdictions and/or is located outside City boundaries.
- Scope 3. All other indirect or embodied GHG emissions not covered in Scope 2 which occur as a result of activity within the jurisdictional boundaries. Typically, these include methane emitted at landfills outside the community resulting from solid waste generated within the community, municipal employee commuting and travel, and extraction, production, use and disposal ("lifecycle" or "value chain") emissions of goods and materials purchased within the jurisdiction.

Emissions Source Sectors

In addition to categorizing emissions by scope, ICLEI recommends that local governments examine their emissions in the context of the sector that is responsible for those emissions. Many local governments will find a sector-based analysis more directly relevant to policy making and project management, as it assists in formulating sector-specific reduction measures and climate action plan components.

The community-wide and municipal GHG emissions inventories utilize data methodology standards outlined in ICLEI USA's U.S. Community Protocol for Accounting and Reporting of Greenhouse Gas Emissions (the ICLEI Community Protocol, 2013). The California Air Resources Board (CARB) recommends the ICLEI Community Protocol for community-scale GHG emissions inventories in California's 2017 Climate Change Scoping Plan Update (Scoping Plan Update). The ICLEI Community Protocol recommends including emissions from five source sectors for a comprehensive community-scale GHG inventory. These sectors include:

- Electricity
- Natural gas
- On-road transportation
- Solid waste
- Water and wastewater

In addition to the basic sectors outlined by the ICLEI Community Protocol, inventories can include other sectors depending on community activity and characteristics. For the City of Pittsburg community-wide inventory, the following optional sectors were also included:

- Marine transportation
- Off-road transportation
- Passenger rail transportation

Community-wide and Municipal Geographic Boundaries

This inventory, like the 2005 baseline inventory for the City of Pittsburg, is separated into two sections: community-wide and municipal. The community-wide inventory includes all emissions occurring within Pittsburg's municipal control (i.e., sources of emissions within the City limits over which the City has significant influence or jurisdictional authority). The municipal inventory includes emissions resulting from facilities that the City owns and/or operates and staff activities. The municipal inventory is a subset of the community inventory, meaning that all municipal operations are included in the energy, transportation, solid waste, or water categories of the community-wide inventory. The municipal inventory should not be added to the community inventory, but is a subset of community-wide emissions. Although municipal operations represent a small portion of the community's overall emissions, a municipal inventory allows the City to track its individual facilities and vehicles and to evaluate the effectiveness of its emissions reduction efforts at a more detailed level.

Global Warming Potentials

The 2016 City of Pittsburg GHG inventory accounts for three primary GHGs: carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O). These gases comprise a large majority of GHG emissions at the community level. GHGs have varying global warming potentials (GWPs) or potency for trapping heat in the atmosphere, so a measurement referred to as carbon dioxide equivalent (CO₂e) is used to compare these with the GWP of CO₂ as a common base. For example, per the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), CH₄ and N₂O are respectively 25 and 298 times more potent than CO₂ in their heat trapping abilities in the first 100 years after initial emission (IPCC 2007). Thus, they have 100-year GPWs of 25 and 298. The GWPs used in this baseline GHG emissions inventory are from the IPCC Fourth Assessment Report. A metric ton of CO₂e (MT CO₂e) is the standard measurement of GHG emissions produced and released into the atmosphere. This is the unit of measure utilized throughout this inventory.

Primary Greenhouse Gases and their Comparative Emissions

Activity Data and Emission Factors

Emissions are estimated using calculation-based methodologies to derive emissions using activity data and emissions factors. To estimate emissions, the following equation is used:

Activity Data × Emission Factor = Emissions

Activity data refer to the relevant measurement of energy use or other GHG-generating processes such as fuel consumption by fuel type, metered annual electricity consumption, and annual vehicle miles traveled. Emission factors are used to convert energy usage or other activity data into associated emissions quantities. They are usually expressed in terms of emissions per unit of activity data (e.g., pounds of CO₂ per kilowatt hour).

2005 Updated Community-wide Inventory

2005 Community-wide Inventory

The City of Pittsburg's updated community-wide inventory accounts for greenhouse gas emissions in metric tons of carbon dioxide equivalent (MT of CO₂e) from five sources:

- Energy
- Transportation
- Off-road vehicles and equipment
- Water and wastewater
- Waste

The inventory utilizes data from the City of Pittsburg and Contra Costa Sanitary District (CCSD) for waste and water usage; PG&E for energy usage; the Metropolitan Transportation Council (MTC) and the California Air Resources Board (CARB) for on-road transportation, the CARB for off-road vehicles and equipment, the City of Pittsburg, the CARB and port lessees for marine transit, Bay Area Rapid Transit (BART) for passenger rail transit, and CalRecycle and LandW Garbage Service for solid waste. Data analysis methodology for the GHG inventory follow standards of the *U.S. Community Protocol for Accounting and Reporting of Greenhouse Gas Emissions*, published by ICLEI USA. The report's appendices detail methodology by sector, including emissions factors and activity data. By detailing calculation methodology and data sources, the inventory update is designed to be transparent and replicable in future to consistently compare emissions growth.

As shown in Table 1, the baseline Community-wide greenhouse gas emissions inventory for 2005 totaled 471,215 MT of CO₂e. Energy use resulted in the largest share of greenhouse gas emissions in 2005, accounting for 47 percent of total emissions. On-road transportation accounted for approximately 39 percent of emissions and off-road transportation and equipment accounted for 8 percent of emissions, as shown in Figure 1 above. The remaining emissions were a result of solid

waste, water consumption and wastewater treatment, rail and marine transit, which each accounted for approximately 7 percent of total emissions.

Sector and Primary Sources	Emissions (MT of CO ₂ e)	Percent of Emissions
Energy		
Electricity use in residential and non-residential buildings	72,249	15.3
Natural gas use in residential and non-residential buildings	145,034	30.8
Electricity transmission and distribution losses	3,901	0.8
On-Road Transportation		
On-road transportation	184,310	39.1
Waste		
Decomposition of solid waste sent to landfills	20,101	4.3
Water and Wastewater		
Electricity used to treat, transport, and pump water	4,708	1.0
Wastewater collection and treatment	517	0.1
Off-Road Vehicles and Equipment		
Recreational vehicles, landscaping, construction, material handling and agricultural equipment ¹	37,089	7.9
Rail Transport		
BART passenger rail	1,170	0.2
Marine Transport		
Port transport and goods movement	2,136	0.5
Community-wide Total	471,215	100.0

Table 1 Community-wide Greenhouse Gas Emissions Inventory (2005)

¹ Off-road vehicles and equipment encompass those included in CARB's Orion database. In addition to the above, this is also composed of commercial and recreation marine vessels, street sweeping vehicles, pumps, generators, air compressors, hydropower units, and water craft.

Notes: Totals may not add to 100% due to rounding. MT CO₂e = metric tons of carbon dioxide-equivalent

To put these emissions into perspective, 471,215 MT CO₂e is equivalent to burning 515 million pounds of coal, adding 100,000 cars to the road, combusting 53 million gallons of gasoline or sequestering carbon from 554,583 acres of U.S. forests in one year.³

Inventory sources can also be classified by scope, in conformance with the WRI and WBCSD's *Greenhouse Gas Protocol Corporate Standard*. As described above, Scope 1 includes direct jurisdictional emissions; Scope 2 includes indirect emissions through utility purchases; and Scope 3 includes all other indirect jurisdictional emissions. Community-wide emissions by scope for the inventory's included sectors are shown in Table 2 below.

³ U.S. Environmental Protection Agency (EPA). 2018. "Greenhouse Gas Equivalencies Calculator". <u>https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator</u>. Accessed July 2019.

Scope	Emissions (MT of CO ₂ e)	Percent of Emissions
Scope 1	374,964	80
Scope 2	76,151	16
Scope 3	20,101	4
Community-wide Total	471,215	100

Table 2 Community-wide Emissions by Scope (2005)

Community Energy Use

The energy sector includes GHG emissions resulting from electricity and natural gas used in residences and commercial buildings throughout the City of Pittsburg and composes the majority of community-wide emissions. In 2005, a total of 221,183 MT of CO₂e was generated within the community due to energy use. This represented 47 percent of community-wide emissions (See Figure 1). Table 3 and Figure 2 show the breakdown of emissions from electricity and natural gas use by source. As shown, energy consumption from commercial uses is larger than residential uses, with 35 percent of total energy emissions due to residential use and 65 percent due to commercial.

Source	Emissions (MT of CO2e)	Percent of Emissions
Natural Gas		
Commercial	100,963	45
Residential	44,070	20
Electricity		
Commercial	41,901	19
Residential	30,348	14
Transmission and Distribution Losses	3,901	2
Total	221,183	100

Table 3	Community-wide Energy Usage	and Emissions	(2005)
---------	-----------------------------	---------------	--------

All residential and commercial electricity and natural gas data was provided by PG&E for 2005 Community-wide usage. This inventory does not include industrial sources as they are not under the City's operational control and several exceed 25,000 MT CO₂e emissions per year, requiring that they perform annual California Mandatory Greenhouse Gas Reporting (MRR) per the 2006 Assembly Bill 32.⁴

⁴ CARB. 2019. Mandatory Greenhouse Gas Emissions Reporting. Accessed at https://ww2.arb.ca.gov/our-work/programs/mandatory-greenhouse-gas-emissions-reporting/about

2005 Updated Municipal Inventory

The municipal inventory of City of Pittsburg government administration, operations and staff activities accounts for GHG emissions from five sources: employee commutes, building and facility energy use, the vehicle fleet, municipal water supply, wastewater, and waste.⁵ Energy data was provided by PG&E and solid waste data was provided by CalRecycle, while all other data was provided by the City of Pittsburg, including survey responses of employee commute modes. By better understanding the relative scale of emissions from each sector, the City can more effectively focus strategies to achieve the greatest emissions reductions.

Data analysis methodology follows the *Local Government Operations Protocol V 1.1* (LGOP) published by the CARB, California Climate Action Registry, The Climate Registry, and ICLEI USA. The LGOP further categorizes sectors by the following sub-sectors for local government operations: 1) buildings and other facilities, 2) streetlights and traffic signals, 3) water delivery facilities, 4) port facilities, 5) airport facilities, 6) vehicle fleet, 7) transit fleet, 8) power generation facilities, 9) solid waste facilities, 10) wastewater facilities, and 11) all processes and fugitive emissions. The City of Pittsburg does not have operational control of an airport, port, power generation facility, or solid waste facility. Local government operations are discussed only in terms of sectors and sub-sectors the City has operational control over. Appendix A details methodology by sector, including emissions factors and activity data.

Figure 3 Municipal Operational Greenhouse Gas Emissions in 2005

As shown in Table 4, City municipal emissions for 2005 totaled 5,681 MT of CO₂e. Transportation is the largest contributor, followed by energy, shown in Figure 3 above. Water treatment, transportation and well pumping also accounted for a substantial portion of emissions due to the Pittsburg Water Treatment Plant and municipal wells. Solid waste and wastewater collection and processing accounted for less than 5 percent of emissions.

Municipal facilities and operations represented 1.4 percent of the Community-wide inventoried emissions in 2005.

⁵ Municipal emissions are a subset of the community-wideCommunity-wide inventory, meaning that the City government emissions are included within the community total and should not be added to the community total.

Table 4	Municipal Greenhouse Gas Emissions Inventory (20)05)
---------	--	------

Sector	Primary Sources	Emissions (MT of CO ₂ e)	Percent of Emissions
Energy			
Building and Facility electrici	ty and natural gas	1,377	24
Streetlights and traffic signal	S	538	9
Transportation			
Employee Commute	Employee commute fuel consumption	887	16
Vehicle and Transit Fleet	Fleet fuel consumption	1,207	21
Waste			
Methane generated from decomposition of solid waste sent to landfills		206	4
Water and Wastewater			
Electricity used to treat, transport, and pump water and wastewater to City facilities		1,462	26
Wastewater collection and processing 5		<1	
Municipal Total		5,682	100

2016 Community-wide Inventory

2016 Community-wide Inventory

The City of Pittsburg Community-wide inventory accounts for greenhouse gas emissions in metric tons of carbon dioxide equivalent (MT of CO_2e) from the same five sources as for 2005:

- Energy
- Transportation
- Off-road vehicles and equipment
- Water and wastewater
- Waste

The 2016 inventory utilizes data from the City of Pittsburg and Contra Costa Sanitary District (CCSD) for waste and water usage; PG&E for energy usage; the Metropolitan Transportation Council (MTC) and the California Air Resources Board (CARB) for on-road transportation, the CARB for off-road vehicles and equipment, the City of Pittsburg and port lessees for marine transit, Bay Area Rapid Transit (BART) for passenger rail transit, and the City of Pittsburg and CalRecycle for solid waste. Data analysis methodology for the GHG inventory follow standards of the *U.S. Community Protocol for Accounting and Reporting of Greenhouse Gas Emissions*. The report's appendices detail methodology by sector, including emissions factors and activity data.

As shown in Figure 4 and Table 5 below, the baseline community-wide greenhouse gas emissions inventory for 2016 totaled 428,563 MT of CO_2e . Energy resulted in the largest share of greenhouse gas emissions in 2016, accounting for 48 percent of total emissions. On-road transportation accounted for approximately 36 percent of emissions and off-road vehicles and equipment accounted for 11 percent of emissions. The remaining emissions were a result of solid waste, water treatment, conveyance and wastewater processing, rail and marine transit, which each accounted for approximately 5.5 percent of total emissions.

Figure 4 City of Pittsburg Incorporated Community Greenhouse Gas Emissions in 2016

Sector and Primary Sources	Emissions (MT of CO ₂ e)	Percent of Emissions
Energy		
Electricity use in residential and non-residential buildings	30,442	7.1
Natural gas use in residential and non-residential buildings	173,020	40.4
Electricity transmission and distribution losses	2,636	0.6
Transportation		
On-road transportation	152,535	35.6
Waste		
Decomposition of solid waste sent to landfills	20,269	4.7
Water and Wastewater		
Electricity used to treat, transport, and pump water	1,917	0.4
Wastewater collection and treatment	526	0.1
Off-Road Vehicles and Equipment		
Recreational vehicles, landscaping, construction, material handling and agricultural equipment ¹	46,240	10.8
Rail Transit		
BART passenger rail	163	<0.1
Marine Transit		
Port transportation and goods movement	814	0.2
Community-wide Total	428,563	100.0

Table 5 Community-wide Greenhouse Gas Emissions Inventory (2016)

¹ Off-road vehicles and equipment encompass those included in CARB's Orion database. In addition to the above, this is also composed of commercial and recreation marine vessels, street sweeping vehicles, pumps, generators, air compressors, hydropower units, and water craft.

Notes: Totals may not add to 100% due to rounding. MT CO₂e = metric tons of carbon dioxide-equivalent

To put these emissions into perspective, 428,563 MT CO₂e is equivalent to burning 469 million pounds of coal, adding 90,990 cars to the road, combusting 48 million gallons of gasoline, or sequestering carbon from 504,400 acres of U.S. forests in one year.⁶

As described previously, inventory sources can also be classified by scope, in conformance with the WRI and WBCSD's *Greenhouse Gas Protocol Corporate Standard*. Community-wide emissions by scope for the inventory's included sectors are shown in Table 6 below.

⁶ U.S. EPA. 2018.

Scope	Emissions (MT of CO ₂ e)	Percent of Emissions
Scope 1	375,216	87
Scope 2	33,078	8
Scope 3	20,269	5
Community-wide Total	428,563	100

Table 6 Community-wide Emissions by Scope (2016)

Community Energy Use

The energy sector includes GHG emissions resulting from electricity and natural gas used in residences and commercial buildings throughout the City of Pittsburg and composes the majority of community-wide emissions. In 2016, a total of 206,098 MT of CO_2e was generated within the community due to energy use. This represented 48 percent of community-wide emissions. Figure 5 and Figure 6 show the breakdown of emissions from electricity and natural gas use, respectively, by source. As shown, most emissions from the energy sector are due to natural gas consumption for commercial uses which make up 64 percent of total energy emissions. Municipal energy use is a subset of community-wide use, discussed further below.

Source	Emissions (MT of CO ₂ e)	Percent of Emissions
Natural Gas	175,370	84
Commercial Uses	131,732	64
Residential Uses	41,288	20
Electricity	30,442	16
Commercial Uses	10,759	5
Residential Uses	19,682	10
Transmission and Distribution Losses	2,636	1
Total	206,098	100

Table 7 Community-wide Energy Usage and Emissions (2016)

Because the California Public Utilities Commission (CPUC) passed a final regulation in May 2014 (Decision 14-05-016) prohibiting public access to commercial or industrial utility energy data if any one user exceeds fifteen percent of total use, commercial natural gas usage is not known after 2013, nor is industrial electricity or natural gas. To estimate commercial natural gas emissions, a linear extrapolation of 2005 to 2013 PG&E reported data was performed to estimate usage for 2016. All residential and commercial electricity data was provided by PG&E for 2016 community-wide usage. This inventory does not include industrial sources as they are not under the City's operational control and several exceed 25,000 MT CO₂e emissions per year, requiring that they perform annual California Mandatory Greenhouse Gas Reporting (MRR) per the 2006 Assembly Bill 32.⁷

Community Transportation

Transportation data was obtained for the travel of vehicles associated with residential and commercial uses by identifying average emissions and vehicle miles traveled (VMT) per category. Residential travel composed the majority of on-road transportation-related emissions in the City of

⁷ CARB. 2019. Mandatory Greenhouse Gas Emissions Reporting. Accessed at https://ww2.arb.ca.gov/our-work/programs/mandatory-greenhouse-gas-emissions-reporting/about

Pittsburg in 2016, with 68% of emissions. A breakdown of emissions by vehicle category can be found in Figure 7 and Table 8 below.

Figure 7 Transportation Sector Sources of Emissions (2016)

Table 8	Citywide Trans	portation Emissions	and Vehicle Miles	Traveled (2016)
---------	-----------------------	---------------------	-------------------	-----------------

Vehicle Category	Emissions (MT CO ₂ e/yr)	
Residential Travel	104,509	
Commercial Travel	42,088	
Other	5,939	
Total	152,535	
Daily VMT	791,420	
Annual VMT	288,868,241	
Average Emissions/Mile (g CO ₂ e/mi)	528 ¹	

Notes: VMT = vehicle miles traveled

¹ Includes electric vehicles. Excluding electric vehicles, emissions per mile are 532 g CO2e/mi.

Sources: CARB EMFAC 2007 tool; Personal communication with Harold Brazil, Bay Area Metro, 2/28/2018; BAAQMD VMT Data Portal 2015

Community Solid Waste

Community-generated solid waste emissions include waste disposal from the incorporated City and City municipal operations exclusive of whether or not waste disposal location was within the incorporated City. Emissions from solid waste include CO₂ resulting from decomposition in aerobic environments and CH₄ resulting from decomposition in anaerobic environments. Total waste generated, the emissions factor used, and total emissions from solid waste are shown in Table 9.

Waste Totals	Quantity
Keller Canyon Waste Disposal (wet short tons)	59,559
Altamont Landfill Waste Disposal (wet short tons)	488
Vasco Road Sanitary Landfill (wet short tons)	9
Other Landfills (wet short tons)	7,651
Total Community Waste to Landfills (wet short tons)	67,707
Waste Disposal Per Capita (MT/person/day)	0.28
Emission Factor (MT/wet short ton)	0.30
Total Community-wide Emissions (MT CO2e)	20,269

Table 9 Community-Generated Solid Waste (2016)

Sources: City of Pittsburg, 2019; CalRecycle, 2018. Altamont and Vasco Road Landfill Quarterly Tonnage Reports. Accessed September 2018 from https://www2.calrecycle.ca.gov/LGCentral/ DisposalReporting/

In addition to landfilled waste, the community has implemented various residential and community composting, recycling, and waste diversion programs. Many of these began in 1990, and others began later in the decade. They include curbside pick-up, self-hauling, and facility drop-off programs. Together, these programs reduced landfilled waste by 42,734 MT in 2016, as shown in Table 10.

Waste Totals	Quantity	
Alternative Daily Cover (wet short tons)	11,033	
Other Diverted Waste ¹	2,378	
Community Composting (MT)	14,704	
Community Biomass (MT)	6,633	
Community Green Waste Total (MT)	21,337	
Community Recycling (MT)	8,111	
Total Diversion	42,734	

Table 10 Community-Generated Alternative Daily Cover, Recycling and Biomass (2016)

¹ Includes diverted large items such as mattresses, tires, hazardous material, metal, concrete, carpeting and aluminum. Sources: City of Pittsburg, 2019. Contra Costa Waste and Mt. Diablo Recycling Tonnage Report 2016. City of Pittsburg, July 2018. CalRecycle Annual Report Summary: Pittsburg 2016.

Community Water and Wastewater

Water emissions come from extraction, conveyance, treatment, distribution and storage of water to the incorporated community and municipal operations. Emissions vary by water origin and distance to treatment facility, water treatment process and equipment used at the facility. Emissions resulting from water use at City facilities are included in this total. Table 11 and Figure 8 below show the contribution of water sourcing and processing emissions by step.

Table 12 lists total water supplied to the City and municipal operations in 2016.

Table 11 Water Emissions by Sourcing and Processing Step (2016)

Processing Step	Emissions (MT CO ₂ e)
Groundwater Extraction	63
Surface Water Treatment and Conveyance	782
Storage	37
Distribution	32
Recycled Water Use	1,002
Total	1,917
Source: City of Pittsburg, 2019	

Figure 8 Water Emissions by Sourcing and Processing Step (2016)

Table 12 Water Supplied to Incorporated Community and Municipal Operations (2016)

Source	Quantity (MG/year)	
Groundwater	1,453	
Surface Water	6,835	
Recycled Water	6,657	
Total Supplied	14,845	
Water Use at Municipal Facilities	103	
Per Capita Supply (gal/person/day)	186	
MG = million gallons		
Per Capita Supply = Total Water Supplied/Po	opulation Served/365.25	

Source: City of Pittsburg, 2019. Water Supply and Treatment Report 2005-2018

2016 Municipal Inventory

The municipal inventory of City of Pittsburg government administration, operations and staff activities accounts for GHG emissions from four sources, shown in Figure 9: transportation, (composed of employee commutes and the vehicle fleet), building and facility energy use, municipal water supply and wastewater, and solid waste.⁸ Energy data was provided by PG&E, while all other data was provided by the City of Pittsburg, including survey responses of employee commute modes.

As for the 2005 inventory update, data analysis methodology follows the *Local Government Operations Protocol V 1.1* (LGOP). The LGOP categorizes sectors by the following sub-sectors for local government operations: 1) buildings and other facilities, 2) streetlights and traffic signals, 3) water delivery facilities, 4) port facilities, 5) airport facilities, 6) vehicle fleet, 7) transit fleet, 8) power generation facilities, 9) solid waste facilities, 10) wastewater facilities, and 11) all processes and fugitive emissions. Local government operations are discussed only in terms of sectors and subsectors over which the City has operational control. Appendix A details methodology by sector, including emissions factors and activity data.

Figure 9 Municipal Operational Greenhouse Gas Emissions in 2016

As shown in Table 13, City municipal emissions for 2016 totaled 3,466 MT of CO₂e. Transportation is the largest contributor to municipal-wide emissions, with the municipal fleet composing 39% of total municipal emissions and employee commutes composing 10% of emissions. This is followed by energy use, totaling 27% of emissions and including electricity and natural gas for buildings, parks, pools, and equipment; electricity for street lights and traffic signals; and the marina. Electricity used for treatment, transport and pumping of water composed 16% of emissions, followed by landfill waste decomposition, composing 11% of emissions, and lastly, wastewater collection and treatment, which composed less than 1% of emissions.

⁸ Municipal emissions are a subset of the community-wide inventory, meaning that the City government emissions are included within the community total and should not be added to the community total.

Energy use for facilities and operations represent over one-quarter of the municipal-wide inventory for the year 2016. The City recognizes the importance of being a leader in sustainability and has performed various efficiency upgrades over the past several years, including installing substantial LED lighting. It was a 2014 Platinum Level award winner for Sustainability Best Practices in the Beacon Program, sponsored by the Institute for Local Government (ILG) and Statewide Energy Efficiency Collaborative (SEEC).⁹ The City is committed to implementing strategies and programs to reduce greenhouse gas emissions and resource use associated with jurisdictional operations.

Sector and Primary Sources	Emissions (MT of CO ₂ e)	Percent of Emissions
Energy		
Buildings and facilities	647	19
Marina	94	3
Streetlights and traffic signals	104	3
Transportation		
Employee Commute	339	10
Vehicle and Transit Fleet	1,390	39
Waste		
Methane generated from decomposition of solid waste sent to landfills	339	11
Water and Wastewater		
Wastewater collection and treatment	6	<1
Electricity used to treat, transport, and pump water	547	16
Municipal Total	3,466	100
Note: values may not add to 100% due to rounding.		

Table 13 Municipal Greenhouse Gas Emissions Inventory (2016)

⁹ Institute for Local Government. 2014. *City of Pittsburg Sustainability Best Practices Activities*. Accessed March 2019 at City of Pittsburg Sustainability Best Practices Activities

Recent Greenhouse Gas Emissions Trend

Community-wide Emissions Changes, 2005 to 2016

A comparison of the 2005 and 2016 Community-wide inventories indicates a decrease in the City of Pittsburg's total greenhouse gas emissions of nine percent over the eleven-year period. As shown in Table 14, emissions from residential and commercial electricity and transmission losses decreased by 47,000 MT of CO₂e, while emissions from on-road transportation decreased by 32,000 MT CO₂e. Table 14 provides a comparison of total emissions and percent change by sector between the two inventory years.

	2005 MT CO₂e		Change from 2005 to 2016	
Sector	(Baseline)	2016 MTCO2e	MT CO ₂ e	% Change (+/-)
Energy	221,183	206,097	-15,086	-7%
Residential Electricity	30,348	19,682	-10,666	-35%
Commercial Electricity	41,901	10,759	-31,142	-74%
Transmission and Distribution Losses	3,901	2,636	-1,265	-32%
Residential Natural Gas	44,070	41,288	-2,782	-6%
Commercial Natural Gas	100,963	131,732	+30,769	+30%
Transportation	224,705	199,752	-24,953	-11%
On-Road	184,310	152,535	-31,775	-17%
Marine	2,136	814	-1,322	-62%
Rail	1,170	163	-1,007	-86%
Off-Road Vehicles and Equipment ²	37,089	46,240	+9,151	+25%
Waste	20,101	20,269	+168	+1%
Water and Wastewater ¹	5,225	2,443	-2,782	-53%
Community-wide Total	471,214	428,563	-42,653	-9%

Table 14 Community Greenhouse Gas Emissions Inventory Comparison, 2005 to 2016

Note: Industrial emissions were reported as a distinct sector in 2005 activity data. Due to California Public Utilities Commission (CPUC) reporting regulations of 2014 (Decision 14-05-016, the "15/15 Aggregation Rule"), industrial and commercial energy data can no longer be reported by the utility provider. Therefore, 2005 industrial emissions are not included in comparison of the two inventory years.

¹ Only municipally-supplied water was accounted under water sector emissions in the 2005 inventory, as part of the municipal inventory. Because water sourced from CCSD is also used throughout the community, it has been calculated and attributed to Community-wide emissions for the 2005 and 2016 inventories.

² This was not included in the original baseline 2005 inventory, but has been calculated and added to the 2005 total for comparison with 2016.

The decrease in Pittsburg's GHG emission can also be evaluated on a per capita basis in order to capture the population and economic growth experienced in the period between the two inventories. Even though Pittsburg's service population increased by 15 percent between 2005 and

2016, as described above in the *Demographic Trends* section of this document, overall GHG emissions decreased by 9 percent. As shown in Table 15, this equates to a reduction of per capita GHG emissions by 21 percent over the eleven-year period.

	2005	2016	% Change (+/-)
Emissions (MT CO ₂ e)	471,214	428,563	-9%
Service Population	89,848	103,042	+15%
Per Capita Emissions (MT CO2e/ Service Person)	5.2	4.2	-21%

Table 15 Per Capita GHG Emissions Comparison, 2005 to 2016

Municipal Operation Emissions Changes, 2005 to 2016

A comparison of the 2005 and 2016 City of Pittsburg municipal operational inventories indicates a reduction of 38% in the City of Pittsburg's total GHG emissions over the eleven-year period. As shown in Table 15, the reduction was largely due to decreased electricity use, including efficiency increases of streetlights and traffic signals, which account for a reduction of 441 MT of CO₂e from 2005; and decreased building energy use, including lighting and equipment efficiency increases, which accounted for a reduction of 509 MT of CO₂e from 2005. Emissions from water and wastewater decreased by 915 MT of CO₂e and employee commute emissions decreased by 547 MT of CO₂e from 2005. Table 16 provides a comparison of emissions and percentage change by sector between the two inventory years.

	2005 MT CO2e		Change from 2005 to 2016	
Sector	(Baseline)	2016 MTCO ₂ e	MT CO ₂ e	% Change (+/-)
Energy	1,915	845	-1,070	-56%
Electricity	1,377	541	-836	-61%
Natural Gas	538	304	-233	-43%
Buildings and Facilities	1,156	647	-509	-44%
Streetlights and Traffic Signals	545	104	-441	-81%
Marina	213	94	-120	-56%
Transportation	2,093	1,729	-364	-17%
Vehicle Fleet	1,207	1,390	+184	+15%
Employee Commutes	887	339	-547	-62%
Waste ¹	206	393	+187	+91%
Water and Wastewater ²	1,467	552	-915	-62%
Municipal Total	5,681	3,520	-2,162	-38%

Table 16 Municipal Greenhouse Gas Emissions Inventory Comparison, 2005 to 2016

¹ Waste generated by municipal operations in 2016 was nearly double the waste generated in 2005. This is partially due to the inclusion of facilities that did not exist in 2005, one of which is the City Corporate Yard, where a large number of municipal employees work. In 2016, the City Corporate Yard facility generated more than half of the total waste generated in all municipal facilities.

² All community-wide water usage was accounted under municipal emissions in the 2005 inventory, as it was provided by the City of Pittsburg. Only water used for municipal facilities and operations is included under municipal water emissions in the 2016 inventory update and for comparison with 2005 municipal emissions.

Conclusion

This 2016 data year inventory update will assist City of Pittsburg decision makers and communitywide stakeholders in identifying opportunities to reduce GHG emissions throughout the City of Pittsburg. It also provides an emissions comparison to the 2005 baseline inventory, identifying sectors and sources of emissions growth and decline over the previous eleven years. This and known or expected future changes in municipal and community-wide operations, policies and regulations, programs, community composition and activity can help decisionmakers and stakeholders envision future emissions levels. The City can use this information to set future emission reduction targets in line with current state regulations and develop a Climate Action Plan.

Programs and policies are already underway to help the City of Pittsburg reduce its GHG emissions consistent with state legislative targets such as those of AB 32 and SB 32. City of Pittsburg municipal energy emissions reduction steps alone include the City's energy efficiency program at City Hall, Energy Star Benchmarking program through PG&E, streetlight LED replacement, community-wide Energy Engage Campaign, Smart Lights Program for commercial refrigeration, Energy Manager energy monitoring, and a City Energy Action Plan, all completed between 2012 and 2014. As noted previously, the City received Platinum Level recognition from the ILG/SEEC Beacon Award for Sustainability Best Practices in 2014. As recognized in this program, the City has also taken strides in green building, water and wastewater efficiency, recycled and reclaimed water use, waste reduction and recycling, climate-friendly purchasing, renewable energy, efficient transportation, land use and design, open space and community outreach activities. solar rebates, conservation programs, green business support and green building program, incentives and ordinances and Cool Trees programs. These accomplishments and others that have occurred since the 2005 baseline inventory could be quantified and included in a Climate Action Plan that would demonstrate the City's path toachieving GHG reduction goals into the future.

Although the City has made considerable effort to reduce GHG emissions, the information provided by the 2005 and 2016 GHG inventories above can be used to create a forecast of future emissions, which would make clear the actions needed to reach State climate goals. AB 32 and SB 32 set goals of reducing emissions to 1990 levels by the year 2020 and then reducing emissions to 40 percent below 1990 levels by 2030. Assuming 2005 GHG emission levels are 15% above 1990 levels, as of 2016 Pittsburg's overall emissions were only 5 percent higher than 1990 levels. Moving into the future, State regulations setting renewable portfolio standards for the procurement of renewable energy (SB 100) and fuel efficiency standards will have some impact on decreasing GHG emission in Pittsburg. However, a comprehensive Climate Action Plan is recommended to be set in place by the City in order to reduce GHG emissions to meet goals set by AB 32 and SB 32.

Appendix A

2016 Greenhouse Gas Emission Inventory Methodology & Calculations

City of Pittsburg

Greenhouse Gas Emission Inventories Updated 2005 and 2016

Appendix A 2016 Greenhouse Gas Emission Inventory Methodology & Calculations

prepared for

City of Pittsburg Environmental Services Department 65 Civic Avenue Pittsburg, California 94565

prepared with the assistance of

Rincon Consultants, Inc. 449 14th Street, Suite 303 Oakland, California 94612

September 2019

Table of Contents

Introduction	1
Inventory Scope	2
Boundary	2
Accounting Protocol and Emission Sectors	2
Excluded Emissions	3
Global Warming Potentials	3
Inventory Methodology	5
Transportation	5
Energy	14
Solid Waste	16
Water	18
Wastewater	23

Tables

Table 1	Residential VMT by Origin-Destination in the City of Pittsburg (2016)7	
Table 2	EMFAC Categories (2016)7	
Table 3	Commercial VMT and Emissions the City of Pittsburg (2016)	
Table 4	Electric Vehicle Emission Variables & Consumption (2016)	
Table 5	Commute Distances by Zip Code10	
Table 6	City Employee Commute Emissions & Vehicle Miles Traveled11	
Table 7	Municipal Fleet Emissions & Vehicle Miles Traveled (2016)	
Table 8	Marine Vessel Emissions (2016)13	
Table 9	Pittsburg/Bay Point Passenger Rail Emissions (2016)14	
Table 10	Citywide Electricity Emissions Factors (2016)15	
Table 11	Citywide Natural Gas Emissions Factors & Consumption (2016)16	
Table 12	Community-Generated Solid Waste (2016)17	
Table 13	Community-Generated Alternative Daily Cover, Recycling and Biomass (2016) 18	
Table 14	Municipally-Generated Solid Waste, Recycling and Alternative Daily Cover (2016)	.18
Table 15	Water Energy Intensities & Emissions Factors (2016)19	
Table 16	Water Supplied to Incorporated Community & Municipal Operations (2016) 19	
Table 17	Water Emissions by Sourcing and Processing Step (2016)	
Table 18	Energy Use and Emissions by Water Processing Step (2016)	
Table 19	Wastewater Emissions by Source (2016)25	

Figures

Figure 1	The Origin-Destination Model	.6
Figure 2	Employee Home Zip Code and Average Commute Distance	.9
Figure 3	Employee Preferred Commute Method	10
Figure 4	Water Emissions by Sourcing and Processing Step (2016)	20
Figure 5	Groundwater Basin Serving the City of Pittsburg	22
Figure 6	Delta Diablo Sanitation District Recycled Water System	23

Introduction

This appendix outlines the methodologies followed to estimate the greenhouse gas (GHG) emissions for the incorporated City of Pittsburg for the 2016 calendar year. Baseline emissions in 2016 were estimated for both the incorporated communities within Pittsburg as well as those emissions resulting from City municipal operations. The GHG inventory relies on activity data for each of the primary emissions sectors including electricity, natural gas, transportation, waste and water. The following Appendix provides a description of the specific methodologies, assumptions, and variables used in the GHG emissions inventory.

Throughout this report, rounding is often required in calculations and tables. Values are rounded to the nearest integer of a higher order of magnitude. No rounding is performed in the intermediary steps of the calculation. As a result of rounding, some totals may differ slightly from the values summed.

Inventory Scope

The following section details the 2016 baseline inventory's geographical scope, data collection protocols, included and excluded emission sectors and GHG global warming potentials.

Boundary

This community-wide GHG emissions inventory includes emissions from actions taken within the incorporated community in the City of Pittsburg. This includes residential, commercial and, where applicable, industrial activities. The City operations inventory includes activities taken by the City government directly. These activities include electricity used in government buildings, fuel used in the government fleet vehicles, as well as water and waste generated by the City directly. Some City operations may take place outside of incorporated areas of the City, but are included as part of the inventory because those actions are under the operational control of the City. The City operations inventory is not additive to the community inventory, but is a subset of those emissions over which the City has direct control.

Accounting Protocol and Emission Sectors

The community-wide and municipal GHG emissions inventories utilize data methodology standards outlined in ICLEI USA's *U.S. Community Protocol for Accounting and Reporting of Greenhouse Gas Emissions* (the ICLEI Community Protocol, 2013). The California Air Resources Board (CARB) recommends the ICLEI Community Protocol for community-scale GHG emissions inventories in *California's 2017 Climate Change Scoping Plan Update (Scoping Plan Update).* The ICLEI Community Protocol recommends including emissions from five source sectors for a comprehensive community-scale GHG inventory. These sectors include:

- Electricity
- Natural gas
- On-road transportation
- Solid waste
- Water and wastewater

GHG emissions are calculated by multiplying activity data (i.e. kilowatt-hours of electricity, metric tons of solid waste) by a process-specific emissions factor (i.e. emission per kilowatt-hour, per ton, per therm). Calculations are refined with regional and City-specific data where available.

In addition to the basic sectors outlined by the ICLEI Community Protocol, inventories can include other sectors depending on community activity and characteristics. For the City of Pittsburg community-wide inventory, the following optional sectors were also included:

- Marine transportation
- Off-road transportation
- Passenger rail transportation

The inclusion of these sectors corresponds with the baseline inventory of 2005 for the City of Pittsburg to offer a comparison of change over the 11-year period.

Excluded Emissions

The baseline inventory focuses on Scope 1 and 2 emissions released within the jurisdictional boundary: direct emissions from owned (primary party) operations, and indirect emissions from operations owned by a second party (such as residential electricity or water consumption producing electricity and wastewater treatment emissions at local facilities). It also includes several Scope 3 emissions, indirect emissions by second and third parties. These include the optional ICLEI inventory sectors mentioned above of off-road equipment, marine goods movement and transportation, and the regional landfill. Scope 3 emissions excluded from the inventory include outsourced waste activities, aircraft operations at regional facilities, and consumption-based value chain emissions of goods and materials.

Aircraft Emissions

No public or private airports exist in the City of Pittsburg. Aircraft emissions are under the jurisdiction of the U.S. Federal Aviation Administration (FAA) and are considered Scope 3 transportation-related activities. As expressed in the ICLEI Community Protocol, these emissions are outside the scope of a community-wide inventory and are not included in the inventory for the City of Pittsburg.

Consumption-Based Emissions

Value chain or lifecycle GHG emissions include those related to extraction, production, use and disposal of purchased goods and materials within the City. These are considered Scope 3 emissions. Currently there exists no standard methodology for reporting consumption-based emissions. As expressed in the ICLEI Community Protocol, Scope 3 emissions are outside the scope required of a community-wide inventory. Consumption-based emissions are not included in the inventory for the unincorporated City of Pittsburg.

Other Stationary Sources

Stationary source emissions from activities other than natural gas combustion, electricity demand, solid waste, water and wastewater treatment are excluded from this inventory since they are not under City jurisdictional control. These include privately-owned operations such as petroleum refining and steel production.

Global Warming Potentials

The City of Pittsburg GHG inventory accounts for three primary GHGs: carbon dioxide (CO_2), methane (CH_4) and nitrous oxide (N_2O). GHGs have varying global warming potentials (GWPs) or potency for trapping heat in the atmosphere, so a measurement referred to as "carbon dioxide equivalent" (CO_2e) is used to compare these with the GWP of CO_2 as a common base. For example, per the Intergovernmental Panel on Climate Change (IPCC)'s Fourth Assessment Report (AR4, 2007), CH₄ and N_2O are respectively 25 and 298 times more potent than CO_2 in their heat trapping abilities in the first 100 years after initial emission.¹ Thus, they have 100-year GPWs of 25 and 298. The GWPs used in this baseline GHG emissions inventory are from the IPCC AR4¹⁷. A metric ton of CO₂e (MT CO₂e) is the standard measurement of GHG emissions produced and released into the atmosphere.

¹ Gases have different decay rates and retain their heat trapping abilities long after the first 100 years. However, this 100-year GWP is a standard base value for comparison. Intergovernmental Panel on Climate Change (IPCC). 2007. *Fourth Assessment Report: Climate Change 2007.* "Direct Global Warming Potentials." Accessed August 2018 at https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10- 2.html.

Inventory Methodology

The following section describes the methodologies used for the municipal and community-wide inventory updates. GHG emissions are calculated by multiplying activity data (kilowatt-hours of electricity, metric tons of solid waste) by an emission factor. Calculations are adapted with regional and City-specific data where available, as described below. Sectors included in the community-wide inventory are electricity, natural gas, on-road, off-road, passenger rail and marine transportation, solid waste, landfill waste, water, and wastewater, as shown in Figure 4 of the Greenhouse Gas Inventory. Sectors included in the municipal inventory are employee commutes, energy, vehicle fleet, waste, water and wastewater, as shown in Figure 10 of the Greenhouse Gas Inventory.

Transportation

On-Road Community-wide Transportation

Transportation data was obtained for residential, commercial and other vehicles by identifying average emissions and VMT per category. The California Air Resources Board (CARB)'s EMFAC 2007 mobile source model provided emissions factors for residential and other vehicles and the Bay Area Air Quality Management District (BAAQMD) VMT Dataportal provided VMT for residential vehicles. Bay Area Metro provided city-specific VMT and emissions data using an MTC transportation model. Residential travel composed the majority of on-road transportation-related emissions in the City of Pittsburg in 2016, with 68% of emissions, as shown in Figure 7 and Table 8 of the Greenhouse Gas Inventory.

Vehicle Miles Traveled

The City of Pittsburg Emissions Inventory estimated on-road vehicle emissions using the origindestination model recommended in the ICLEI Community Protocol to establish vehicle miles traveled (VMT). The origin-destination model estimates trip mileage using a demand-based modeling system that incorporates traffic and activity in the surrounding areas and factors in various demographic and economic information including employment, vehicle types, school locations, public transit routes, population projections, and non-work or school related activities.² The origin-destination model is also consistent with CARB's Regional Targets Advisory Committee (RTAC) recommendations for compliance with SB 375.³

The origin-destination model better attributes transportation emissions by jurisdiction of a trip's origin and destination. Trips that begin and end within the jurisdiction (internal-internal) are 100% attributed to the jurisdiction; trips that being outside and within the jurisdiction (external-internal) are 50% attributed to the jurisdiction; trips that begin within and end outside the jurisdiction (internal-external) are 50% attributed to the jurisdiction; and trips that begin and end outside the jurisdiction (internal-external) are 50% attributed to the jurisdiction; and trips that begin and end outside the jurisdiction, and are simply passing through, are entirely excluded. See Figure 1 below for an illustration.

² Metropolitan Transportation Commission. CAP VMT Travel Model One. http://capvmt.us-west-2.elasticbeanstalk.com/about

³ California Air Resources Board. (August 2009). "Recommendations of the Regional Target Advisory Committee (RTAC) Pursuant to Senate Bill 375". Accessed August 2018 from https://www.arb.ca.gov/cc/ sb375/rtac/report/092909/finalreport.pdf

Figure 1 The Origin-Destination Model

VMT was separated by Residential, Commercial and Other vehicle category as defined by the MTC VMT model (see Table 1 below). Total daily commercial vehicle VMT for the City was obtained from personal communication with staff at Bay Area Metro who provided city-specific values based on countywide data from MTC. Vehicle category 'Other' VMT was obtained from the EMFAC 2007 mobile source model using the estimated on-road county vehicle mix of motorcycles, motor coaches and buses in 2016. This was multiplied by the citywide share of county employment⁴ provided by Bay Area Metro. VMT was then multiplied by 365 to obtain average annual VMT.

Total daily residential vehicle VMT was obtained from the Bay Area Air Quality Management District (BAAQMD)'s VMT Data Portal, which provides city-wide non-commercial vehicle trip rates by origin and destination. Following the origin-destination model, half of partially inside trips (originating or ending inside the city), all inside trips (originating and ending inside the city), and no outside trips were included in estimating residential VMT. To obtain 2016 data, VMT was assumed to increase linearly from 2015 to 2020 using the values provided by the Data Portal. VMT per the origin-destination model are shown in Table 1 below.

⁴ Longitudinal Employer-Household Dynamics (LHED), a common tool of the U.S. Census Bureau to provide information on regional employment and job flow.

Origin-Destination of Trips	VMT
Internal-Internal	76,739
Internal-External/ External-Internal	1,226,050
External-External	114,879,831
Weighted Jurisdictional	689,764
Source: BAAQMD VMT Data Portal 2015	

Table 1 Residential VMT by Origin-Destination in the City of Pittsburg (2016)

To account for different emission factors of combustion engines and electric vehicles (EVs) among residential vehicles⁵, residential EV VMT was also calculated. Countywide EV VMT in 2016 was provided by the EMFAC 2007 mobile source model and scaled by population to City level. EV trips accounted for less than one percent of VMT in 2016.

Vehicle Mix and Emissions

Residential and Other sector vehicle emissions data were derived from the CARB 2014 EMFAC Mobile Source Emission Inventory model using City-based emission factors, the model mix of all vehicle classes (classes are identified in EMFAC model version 2011), model years, speed bins, and associated fuel types for the City of Pittsburg in 2016. EMFAC speed bin distributions of each 5 mile per hour bin up to 90 mph were used to identify VMT and associated emissions. Residential and Other sector emissions were calculated from the average of all EMFAC vehicle classes in the corresponding MTC vehicle category (Passenger and 'Not included', as shown in Table 2 below). MTC categories were also used to identify inventory vehicle sector. Average EMFAC emissions per sector were then divided by EMFAC VMT per sector to obtain emissions per mile. This emissions factor was multiplied by the Residential and Other vehicle sector VMTs, as described in Section 4.4.1 above, to obtain total emissions.

EMFAC Class	MTC Vehicle Category	Transportation Sector
LDA	Passenger	Residential
LDT1	Passenger	Residential
LDT2	Passenger	Residential
MDV	Passenger	Residential
T6 (all)	Commercial	Commercial
T7 (all)	Commercial	Commercial
LHD1	Commercial	Commercial
LHD2	Commercial	Commercial
РТО	Commercial	Commercial
UBUS	Not Included	Other
MCY	Not included	Other
МН	Not included	Other

Table 2 EMFAC Categories (2016)

⁵ EVs are included in EMFAC vehicle categories LDA and LDT1, both residential categories in this inventory (see Table 4).

City of Pittsburg Appendix A: 2016 Greenhouse Gas Inventory Methodology and Calculations

SBUS	Not included	Other	
OBUS	Not included	Other	
Motor Coach	Not included	Other	
All Other Buses	Not included	Other	
Source: Personal communication with Harold Brazil, Bay Area Metro, 2/28/2018.			

Commercial sector vehicle emissions data was provided by staff at Bay Area Metro utilizing an MTC transportation model. U.S. Census Bureau regional employment and job flow data, known as Longitudinal Employer-Household Dynamics (LEHD), was used to estimate the citywide share of county commercial transportation. Countywide emissions and VMT obtained from the MTC model was then scaled with this citywide share to identify the City of Pittsburg's commercial emissions, as shown in Table 3 below.

Table 3	Commercial VMT	and Emissions the	City of Pittsburg	(2016)
Table 3		and runssions me	City of Fillsburg	(2010)

Origin-Destination of Trips	VMT	
City LEHD Share	5.83%	
Countywide Emissions/Day (MT CO2e)	1,979	
Countywide VMT/Day (miles)	1,458,983	
Citywide Emissions/Day (MT CO2e)	115	
Citywide VMT/Day (miles)	85,001	
Source: Personal communication with Harold Brazil, Bay Area Metro, 2/28/2018		

The electric vehicle (EV) emission factor was derived from PG&E's electricity emissions factor for 2016. The EMFAC model estimated VMT for EVs countywide, which was scaled to City level by percent of county population pre the U.S. Census Bureau. To estimate electricity required of EVs per VMT, U.S. Department of Energy (US DOE) current average fuel economy data was used for all-electric light-duty passenger vehicle and low-weight light-duty truck models. The calculated EV emissions factor was added into EMFAC countywide data for the two corresponding electric vehicle classes (LDA and LDT1) to determine the aggregate Residential sector emissions factor. The inventory quantification variables, data sources, and total emissions for EVs are shown in Table 4 below.

		-
Inventory Variable	Variable/Quantity	Data Source
Electricity Emission Factor	0.133 MT CO ₂ /MWh	PG&E ¹
EV Fuel Economy of Light-Duty Vehicles	35 kWh/100 mi	U.S. DOE Fuel Economy Database ² and Alternative Fuel Data Center ³
EV Emissions per mile	46.6 g CO₂e/mi	Calculated (EF x Fuel Economy)
EV Annual VMT in Incorporated City	2,177,046 VMT	CARB 2014 EMFAC Model
Total Annual EV Emissions	101.3 MT CO ₂ e	Calculated (EF x Consumption x VMT)

Table 4 Electric Vehicle Emission Variables & Consumption (2016)

¹ PG&E. 2017. Corporate Responsibility and Sustainability Report 2017. Environment Chapter: Climate Change. Accessed March 2019 at http://www.pgecorp.com/corp_responsibility/reports/2017/

² U.S. DOE. (2018). Fuel Economy Database. "Compare Electric Vehicles Side by Side." Accessed September 2018 at https://www.fueleconomy.gov/feg/evsbs.shtml

³ U.S. DOE. (2018). Alternative Fuel Data Center. "Charging Plug-in Electric Vehicles at Home." Accessed September 2018 at https://www.afdc.energy.gov/fuels/electricity_charging_home.html

On-Road Municipal Transportation

Municipal Commute Emissions

City employee commute data was provided by the City of Pittsburg and sourced from a Bay Area Commuter Benefits Program employee survey conducted in August 2014 per requirements of the BAAQMD (Regulation 14, Rule 1). At this time, the City had 239 full-time employees. One hundred eleven employees participated in the commute survey, approximately 46% of full-time staff. Respondents provided their home address by zip code (Figure 2), from which an average commute distance from urban or geographic centers in each zip code on major roads to the location of municipal central offices (65 Civic Avenue) was estimated (Table 5). Those selecting public transit (two respondents) were assumed to commute locally from within the 94565 zip code a slightly shorter distance than those who drive alone. This was estimated at two miles for one-way public transit commutes.

Figure 2 Employee Home Zip Code and Average Commute Distance

Ta	Table 5 Commute Distances by Zip Code			
	Zip Code	One-Way Daily VMT		
	94565	3		
	945311	6		
	945091	10		
	94513	16		
	94521	11		
	94561	12		

Note: VMT = vehicle miles traveled.

¹ Zip codes 94509 and 94513 were combined into one category the commute survey, creating an average of 8 VMT/day. Sources: Google Maps 2019; UnitedStatesZipCodes.org 2019

Respondents also provided their preferred commute method (Figure 3). EMFAC 2016 average onroad emissions for the MTC Passenger Vehicle category (categories listed in Table 2 of the *Vehicle Mix and Emissions* section above) were used to calculate employee commute emissions for those selecting "Drive Alone" and "Carpool". Carpools were conservatively assumed to include two people commuting daily; therefore, the per capita carpool emission factor was halved compared to driving alone. EMFAC "UBUS" (Urban Bus) gas and diesel classes were used to estimate a per person "Public Transit" emission factor assuming a bus load of 15 people. In addition, all employees were assumed to commute to and from work daily for 250 days per year. Survey responses, calculation values and emissions are shown in Table 6 below.

Figure 3 Employee Preferred Commute Method

Note: Values may not add to 100% due to rounding.

Inventory Variable	Value	
Passenger Vehicle Emissions (g CO2e/mi)	415.1	
Daily VMT	3,261	
Annual VMT	815,212	
Annual Carpool and Drive Alone Emissions (MT CO2e)	338	
Urban Bus Emissions (g CO2e/mi)	21.5	
Per Passenger Urban Bus Emissions (g CO2e/mi)	1.4	
Daily VMT	18	
Annual VMT	4,422	
Annual Public Transit Emissions (MT CO2e)	0.6	
Total Commute Emissions	339	

Table 6 City Employee Commute Emissions & Vehicle Miles Traveled

Note: VMT = vehicle miles traveled.

Sources: City of Pittsburg 2014. Bay Area Commuter Benefits Program employee commute survey.

CARB 2014 EMFAC Model. 2016 Average Fleet Mix.

Municipal Vehicle Fleet Emissions

City-owned and operated vehicle fleet data was provided by the City of Pittsburg's Environmental Services Department. Emissions were calculated based on the annual; volume of fuel purchased by the City, and an estimated emission factor for the entire municipal fleet. CO₂ emissions were calculated using the ICLEI Local Governments Operations Protocol (LGOP), utilizing the volume of fuel combusted multiplied by the provided default national emission factors by fuel type. As CH₄ and N_2O emissionsvary by vehicle class, year, and fuel type, and mileage data was not available for the fleet, anemissions per volume of fuel combusted emission factor was derived for each on-road vehicle in themunicipal fleet using the appropriate EPA emissions per mile emission factor and the United StatesEnergy Information Administration (EIA) estimated fuel economy for the year and class of eachvehicle. These emission factors were averaged to obtain an average fleet emission factor which wasmultiplied by the total volume of gasoline purchased by the City in 2016. All non-highwayequipment was assumed to use diesel fuel, and separate diesel CH₄ and N₂O emissions factor weredetermined for on-road diesel vehicles. The volume of diesel fuel purchased in 2016 was multipliedby the proportion of on-road or off-road diesel fueled vehicles, and the appropriate emission factorto determine CH₄ and N₂O emissions. Emission factors and calculated emission values are shown in

Table 7.

Fuel Type	Emission Factor	Emissions (MT CO ₂ e) ¹
CO ₂		
Gasoline	8,870 grams/gallon ²	1,120
Diesel	10,180 grams/gallon ²	255
CH ₄		
Gasoline	0.12 grams/gallon	0.4
Diesel (Off-Road)	0.58 grams/gallon	0.3
Diesel (On-Road)	0.03 grams/gallon	<0.1
N ₂ O		
Gasoline	0.34 grams/gallon	12.7
Diesel (Off-Road)	0.26 grams/gallon	1.52
Diesel (On-Road)	0.03 grams/gallon	<0.1
Total Fleet Emissions		1,390

Note: VMT = vehicle miles traveled

¹U.S. Energy Information Administration (EIA). 2019. Total Energy Overview, Motor Vehicle Mileage, Consumption and Fuel Economy. https://www.eia.gov/totalenergy/data/browser/?tbl=T01.08 Accessed July 2019.

² U.S. EPA. 2018. Greenhouse Gas Emissions from a Typical Passenger Vehicle.

https://nepis.epa.gov/Exe/ZyPDF.cgi/P100JPPH.PDF?Dockey=P100JPPH.PDF. Accessed June 2019.

Source: City of Pittsburg Environmental Services Department purchase records

Marine Transportation

Marine vessels operating at the City-owned Port of Pittsburg included three lessees in 2016—Koch Carbon, Dow Chemical and USS POSCO steel manufacturer. These operators use the port to import materials and export goods periodically throughout the year. The City of Pittsburg provided marine vessel data from lessees, approximated from 2016 or the nearest year available. The ICLEI Community Protocol's TR.7.A Marine Vessel methodology was used to identify emissions from these sources. Emissions include distance traveled within the Pittsburg Port waters, and energy used while during hoteling activities. In port shore power was provided for USS Posco vessels, while Dow Chemical and Koch Carbon hoteling activities were powered by auxiliary engines contained on the vessel. All vessels accounted for in this inventory are Dry Bulkers with a deadweight tonnage (DWT) of 35,000. Values and emissions are shown in Table 8 below.

Table 8Marine Vessel Emissions (2016)

Port Lessee	Variable	9
Dow Chemical		
Number of Vessels	5	
Activity Hours per Day	12	
Days in Port	5	
Annual Hoteling Hours per Vessel	60	
Vessel Auxillary Engine Power Rating	2,259	
Vessel Auxillary Engine Load Factor	10	
Hoteling Emissions (MT CO2e)	46.9	
Transport & Maneuvering Emissions (MT CO2e)	17.3	
Koch Carbon		
Number of Vessels	28	
Activity Hours per Day	12	
Days in Port	5	
Annual Hoteling Hours per Vessel	60	
Vessel Auxillary Engine Power Rating	2,259	
Vessel Auxillary Engine Load Factor	10	
Hoteling Emissions (MT CO2e)	262.7	
Transport & Maneuvering Emissions (MT CO2e)	96.6	
USS Posco		
Number of Vessels	18	
Annual Activity Hours per Vessel	973	
Annual Hoteling Hours	905	
Shore Power Electricity (kWh)	1,678	
Annual Shore Power Emissions (MT CO2e)	0.22	
Transport & Maneuvering Emissions (MT CO2e)	390.8	
Total Emissions (MT CO2e)	814.5	

Passenger Rail Transportation

Passenger rail emissions data was provided by Bay Area Rapid Transit (BART). BART has one station, Pittsburg/Bay Point, located near the intersection of Highway 4 and Bailey Road in central Pittsburg, which began serving passengers in December 1996. Another station, Pittsburg Center/Antioch opened in May 2018. However, emissions from this e-BART station are excluded from the inventory as the station was opened after the 2016 inventory year. BART, in coordination with Arup Consulting, performs an annual energy and passenger rail usage analysis, including current emissions by station and Climate Action Plan analysis of future emissions. Station-based emissions encompass all related operational emissions, including the station and support facilities, as well as BART systemwide apportioned to station use. In 2016, the Pittsburg/Bay Point station accounted for 1.5% of the BART systemwide usage. BART's energy sources also changed substantially in 2016, acquiring more renewable energy and releasing fossil fuel-based operations. Therefore, both portion of system use and station-based GHG emissions decreased markedly from the previous year. BART emissions and station usage are shown in Table 9 below.

Table 9 Pillsburg	Bay Point Passenger Rail Emis	sions (2016)	
Inventory Variable		Value	
Average Station Week	day Ridership (passenger exiting)	6,526	
Percent of BART Syste	mwide Emissions	1.5%	
Portion of BART Syste	mwide Emissions (MT CO2e)	127	
Station Operational Er	nissions (MT CO2e)	36	
Total Station Emission	ns (MT CO2e)	163	
Source: BART 2019			

Table 9 Pittsburg/Bay Point Passenger Rail Emissions (2016)

Energy

Electricity

Electricity use within the City of Pittsburg includes residential and commercial consumption for the community-wide inventory, and government-owned building consumption for the municipal inventory. Because electricity is an indirect, Scope 2 emissions source, this category includes emissions that may occur outside the City bounds at regional power plants. Electricity consumed for water treatment and distribution was excluded from the electricity use category and instead incorporated in the water and wastewater source category. Electricity consumed for electric vehicles operating entirely within the City and half of electric vehicles operating partially within the City were excluded from the electricity use category and instead incorporated in the transportation source category as part of the residential on-road sector. Table 7 and Figure 5 of the Greenhouse Gas Inventory show the sources of electricity emissions in the City of Pittsburg in 2016.

Electricity use was provided by PG&E in the form of kilowatt-hours per year (kWh/yr) for the residential and commercial customer groups for 2016 and for the industrial group from 2005 to 2013. The California Public Utilities Commission (CPUC) passed a final regulation in May 2014 (Decision 14-05-016) prohibiting public access to a utility's commercial and/or industrial energy data if any one entity within the category exceeds 15 percent of total usage.⁶ The decision also prohibits access to the combined total of commercial and industrial data if any one entity exceeds 15 percent of the usage total when combined. Known as the "15/15 Aggregation Rule", this new regulation prevents public access to all commercial natural gas and industrial electricity and natural gas data in the City of Pittsburg after 2014 because of large energy users existing in the community. Industrial usage is not under the City's direct operational control and larger facilities are subject to the CARB's Mandatory Regulation for GHG Reporting (MRR) if they exceed 25,000 MT per year. Therefore, the industrial sector, including industrial data originally reported in the 2005 inventory, is excluded from the scope of this inventory update.

The ICLEI Community Protocol's "Built Environment 2" methodology was used to estimate incorporated City commercial, residential and municipal electricity consumption. In addition to energy consumption, the amount of emissions generated due to electricity transmission and distribution (T&D) losses were determined. Although emissions generated due to electricity T&D

⁶ California Public Utilities Commission. 2014. Decision 14-05-016. Decision Adopting Rules to Provide Access to Energy Usage and Usage-Related Data while Protecting Privacy of Personal Data. Accessed from http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M090/K845/90845985.PDF

losses are outside of the City's operational control, emissions related to T&D loses are directly related to electricity use within the community. Transmission and distribution losses were determined by multiplying a 2016 loss factor for PG&E of 1.0948 with annual electricity consumption. The electricity consumption emission factor was calculated from The Climate Registry's PG&E 2016 report and the T&D loss factor from the CPUC 2017 statewide energy grid report. These were multiplied by megawatt-hours (MWh) of electricity use to estimate total annual emissions in metric tons of CO₂e per MWh.

PG&E provided the emissions factor for electricity in data year 2016, a value reflecting its portfolio mix of renewable energy. PG&E's emission factor was reported in its Corporate Responsibility and Sustainability Report 2017 and to the California Climate Action Registry as 0.133 MT CO₂/MWh (0.294 lb CO₂/kWh).

Because eGRID uses GWPs from the IPCC Second Assessment Report rather than AR4, additional calculations were made to identify the updated electricity carbon-dioxide equivalent emissions and to allow for consistency across inventory sectors. N₂O and CH₄ emission factors from eGRID 2016 data for the California CAMX subregion were multiplied with the updated GWPs (298 for N₂O and 25 for CH₄, updated from SAR 310 for N₂O and 21 for CH₄). Then these were combined with the CO₂ emission factor to produce the total carbon dioxide-equivalent emissions in pounds CO₂e/MWh. This calculation is shown in Table 10 below.

Electricity for City municipal administration and operations was provided by the City of Pittsburg's energy management software. Municipal emissions were calculated similarly to community-wide emissions, multiplying by the PG&E emission factor in the City of Pittsburg service area. Table 10 shows the emission factors for community-wide electricity use in the City of Pittsburg in 2016, and for municipal operations.

Inventory Variable	Quantity	Data Source
PG&E Emission Factor	0.133 MT CO2/ MWH	PG&E and TRC
CO2e Emission Factor	529.879 lb/MWh	Calculated (CO2 EF + N2O EF x 298+ CH4 EF x 25)
Transmission & Distribution Loss Factor	1.0948	CPUC 2017
Community-wide Electricity Consumption	228,272,687 kWh	PG&E
Municipal Electricity Consumption	17,597,150 kWh	PG&E/City invoices/purchase records
GHG Emissions	30,442 MT	Calculated (EF x Electricity Consumption)

Table 10 Citywide Electricity Emissions Factors (2016)

Sources: US EPA. (February 2018). eGRID 2016 Data File. Accessed June 2019 at https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid

The Climate Registry. 2018. CRIS Public Reports. https://www.theclimateregistry.org/our-members/cris-public-reports/

CPUC Decision 15-11-027 http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M156/K044/156044151.PDF

PG&E. 2017. Corporate Responsibility and Sustainability Report 2017. Environment Chapter: Climate Change. Accessed June 2019 at http://www.pgecorp.com/corp_responsibility/reports/2017/

CPUC. 2017 Report System Efficiency of California's Electricity Grid. Accessed June 2019 at

http://www.cpuc.ca.gov/uploadedFiles/CPUC_Public_Website/Content/About_Us/Organization/Divisions/Policy_and_Planning/PPD_ Work/PPD_Work_Products_(2014_forward)/System_Efficiency_Report%20PPD_May_24_Final.pdf

Natural Gas

Natural gas use within the unincorporated City of Pittsburg includes residential and commercial consumption for the community-wide inventory, and government-owned building consumption for the municipal inventory. Because natural gas is a direct, Scope 1 emissions source with all emissions occurring at the point of consumption (such as indoor furnaces and stoves), no emissions external to the incorporated City must be considered. Table 7 and Figure 6 of the Greenhouse Gas Inventory show the sources of natural gas emissions in the City of Pittsburg in 2016.

The ICLEI Community Protocol's "Built Environment 1" methodology for Stationary Fuel Combustion was used to estimate unincorporated City natural gas consumption. The natural gas emission factor provided by PG&E was multiplied by natural gas consumed (in million therms, MM therms) to estimated total annual emissions in metric tons of CO₂e per MM therms. Natural gas use was provided by PG&E for the residential customer group in the form of therms per year (therms/yr).

Due to CPUC Decision 14-05-016 passed in May 2014⁷, described above, commercial natural gas usage became publicly unavailable after 2013. This is caused by large energy users existing in the community that individually account for over 15 percent of commercial natural gas usage. To accommodate for missing data, a linear extrapolation of 2005 to 2013 PG&E reported data in kWh/yr was performed to estimate commercial natural gas usage in 2016. Total usage and the variables used for natural gas calculations are shown in Table 11 below.

Inventory Variable	Quantity	Data Source
Emissions Factor	5,850 MT/MM therms	PG&E
Community-wide Consumption	33.04 MM therms	PG&E
Residential Consumption	7.78 MM therms	PG&E
Commercial Consumption	25.26 MM therms	Calculated from PG&E
Municipal Consumption	396,949 therms	City of Pittsburg
Community-wide GHG Emissions	175,370 MT	Calculated (EF x Community-wide Consumption)
Municipal GHG Emissions	2,107 MT	Calculated (EF x Municipal Consumption)

Table 11	Citywide	Natural	Gas	Emissions	Factors	&	Consum	otion ((2016)
	Citywiac	naturai	Jus	LITIISSIONS	racions	α	Consum		2010)

Solid Waste

Emissions from solid waste include CO_2 resulting from decomposition in aerobic environments and CH₄ resulting from decomposition in anaerobic environments. GHG tailpipe emissions from waste collection and management vehicles are excluded from this sector and incorporated in the mobile sources sector.

Based on ICLEI Community Protocol standard methodology, waste CH₄ emissions were calculated from community-wide solid waste emissions using the "Solid Waste 4" method. Method 4 uses solid waste generated and deposited at landfill during the baseline year to estimate future emissions. This allows for an encompassing estimate of annual solid waste emissions reflecting the slow rate of

⁷ California Public Utilities Commission. 2014. Decision 14-05-016. Decision Adopting Rules to Provide Access to Energy Usage and Usage-Related Data while Protecting Privacy of Personal Data. Accessed from

waste decomposition. Because no landfills exist within the incorporated city, waste-in-place landfill emissions were not calculated into solid waste emissions.

Community-Generated Solid Waste

Community-generated solid waste emissions include waste disposal from the incorporated City and City municipal operations exclusive of whether or not waste disposal location was within the incorporated City. One active landfill exists just outside the City of Pittsburg—Keller Canyon Landfill—to which much of the waste is disposed. The rest of landfilled waste is sent to Altamont and Vasco Road Sanitary landfills. Calculations utilize the *ICLEI Community Protocol* "Solid Waste 4", Community-Generated Waste Sent to Landfills, methodology to estimate emissions. This method multiples an emissions factor that accounts for lifetime waste decomposition for mixed solid waste to community waste disposal volume in wet short tons. Since recycled waste and biomass material are removed from solid waste prior to landfill diversion, the impact of these efforts on emissions reductions are reflected in a lower landfill waste volume and emissions.

Community-wide solid waste generated in 2016 was provided by the California Department of Resources Recycling and Recovery (CalRecycle) Disposal Reporting System (DRS) in wet short tons per quarter. An emissions factor for CH₄ per wet short ton was multiplied with volume of disposed solid waste to calculate total solid waste emissions. Following *ICLEI Community Protocol* guidelines, landfill gas capture was assumed to be 75 percent with a 10 percent oxidation rate. Total waste generated, the emissions factor used, and total emissions from solid waste are shown in Table 12 below.

Waste Totals	Quantity	
Keller Canyon Waste Disposal (wet short tons)	59,559	
Altamont Landfill Waste Disposal (wet short tons)	488	
Vasco Road Sanitary Landfill (wet short tons)	9	
Other Landfills (wet short tons)	7,651	
Total Community Waste to Landfills (wet short tons)	67,707	
Waste Disposal Per Capita (MT/person/day)	0.28	
Emission Factor (MT/wet short ton)	0.30	
Total Community-wide Emissions (MT CO ₂ e)	20,269	

Table 12 Community-Generated Solid Waste (2016)

Sources: City of Pittsburg, 2019; Calrecycle, 2018. Altamont and Vasco Road Landfill Quarterly Tonnage Reports. https://www2.calrecycle.ca.gov/LGCentral/ DisposalReporting/. Accessed June 2019

In addition to landfilled waste, the community has implemented various residential and community composting, recycling, and waste diversion programs. Many of these began in 1990 and others began later in the decade. They include curbside pick-up, self-hauling, and facility drop-off programs. Together, these programs reduced landfilled waste by 42,734 MT in 2016, as shown in Table 13.

Table 13 Community-Generated Alternative Daily Cover, Recycling and Biomass (2016)

Waste Totals	Quantity	
Alternative Daily Cover (wet short tons)	11,033	
Other Diverted Waste ¹	2,378	
Community Composting (MT)	14,704	
Community Biomass (MT)	6,633	
Community Green Waste Total (MT)	21,337	
Community Recycling (MT)	8,111	
Total Diversion	42,734	

¹ Includes diverted large items such as mattresses, tires, hazardous material, metal, concrete, carpeting and aluminum. Sources: City of Pittsburg, 2019. Contra Costa Waste and Mt. Diablo Recycling Tonnage Report 2016. City of Pittsburg, July 2018. Calrecycle Annual Report Summary: Pittsburg 2016.

Municipally-Generated Solid Waste

Municipal emissions composed two percent of total community-wide emissions from landfilled waste in 2016. Similarly to community waste diversion, municipal facilities participate in composting, recycling and biomass waste diversion. Pittsburg schools, including Los Menados College's Pittsburg campus, contribute the majority of waste diversion, while municipal facilities contribute a smaller amount. Total waste disposal, diversion, and associated emissions are shown in Table 14 below.

Table 14 Municipally-Generated Solid Waste, Recycling and Alternative Daily Cover (2016)

Waste Totals	Quantity
Municipal Solid Waste Entering Landfills (wet short tons)	2,745
Municipal Recycling (MT)	24
Municipal Composted (MT)	3
Emission Factor (MT/wet short ton)	0.34
Total Municipal Emissions (MT CO2e)	926
Source: City of Pittsburg 2019.	

Water

Water emissions come from extraction, conveyance, treatment, distribution and storage of water to the incorporated community and municipal operations. Emissions vary by water origin and distance to treatment facility, water treatment process and equipment used at the facility. Emissions resulting from water use at City facilities are included in this total. Emissions from electricity used for pumping, storage and treatment are also included in water sector emissions and excluded from electricity sector emissions.

ICLEI Community Protocol's "Wastewater 14" method was utilized to calculate emissions separately for each step in water sourcing (extraction, treatment and conveyance, storage and distribution).

The City of Pittsburg 2015 Urban Water Management Plan provides total electricity used for these each step in the 2015 fiscal year (FY), as well as the energy intensity per water volume for recycled water treatment and distribution. Energy intensities, emission factors and sources are shown in Table 15 below.

Inventory Variable	Quantity	Data Source
Water Consumption	2,169 MG	City of Pittsburg
Electricity Emissions Factor	294 MT CO2e/ MG	PG&E
Extraction Energy Intensity	471,299 kWh	Pittsburg 2015 UWMP
Treatment & Conveyance Energy Intensity	5,862,859 kWh	Pittsburg 2015 UWMP
Distribution Energy Intensity	242,376 kWh	Pittsburg 2015 UWMP
Storage Energy Intensity	279,243 kWh	Pittsburg 2015 UWMP
Recycled Water Energy Intensity	3,466 kWh/MG	Pittsburg 2015 UWMP
Community-wide GHG Emissions	1,917 MT CO2e	Calculated (EF x Community Consumption)
Municipal GHG Emissions	547 MT CO2e	Calculated (EF x Municipal Consumption)

Table 15 Water Energy Intensities & Emissions Factors (2016)

The City of Pittsburg provided data on surface and groundwate supply to the incorporated community for the 2015 fiscal year (FY) and 2016 FY, and City municipal facilities for 2016. The 2015 FY data, which encompasses July 2015 through June 2016, is used as a proxy for all 2016 data as delivered water totals are comparable between the years and more complete data is available for the 2015 FY. Recycled water supply was provided by the City's 2015 UWMP. Table 16 lists total water supplied to the City and municipal operations in 2016.

The City of Pittsburg provided data on surface and groundwater supply to the incorporated community for the 2015 fiscal year (FY) and 2016 FY, and City municipal facilities for 2016. The 2015 FY data, which encompasses July 2015 through June 2016, is used as a proxy for all 2016 data as delivered water totals are comparable between the years and more complete data is available for the 2015 FY. Recycled water supply was provided by the City's 2015 UWMP. Table 16 lists total water supplied to the City and municipal operations in 2016.

Step	Community-wide Quantity (MG/Year)	Municipal Quantity (MG/Year)
Groundwater	441	9
Surface Water	2,227	47
Recycled Water	2,169	46
Total Supplied	4,837	103
Percent Municipal Use	2.13%	
Per Capita Supply (gal/person/day)	186	
MG = million gallons		

Table 16 Water Supplied to Incorporated Community & Municipal Operations (2016)

Per Capita Supply = Total Water Supplied / Population Served / 365.25

Source: City of Pittsburg, 2019. Water Supply and Treatment Report 2005-2018.

Recycled water composes the majority of water sector emissions, followed by treatment and conveyance and extraction, while distribution and storage compose only a small contribution to water processing emissions. Figure 4 and Table 17 below show the contribution of water sourcing and processing emissions by step.

Processing Step	Emissions (MT CO ₂ e)	
Groundwater Extraction	63	
Surface Water Treatment and Conveyance	782	
Storage	37	
Distribution	32	
Recycled Water Use	1,002	
Total	1,917	
I OTAI Source: City of Pittsburg, 2019.	1,917	

Table 17	Water Emissions	bv	Sourcina	and Processing	1 Step	(2016)
	Water Enhosteris	~ ,	oouronig			(2010)

Table 18 shows water volume in each step of processing, along with energy intensity per volume water, electricity use and emissions. Water volume multiplied by energy intensity allowed for an estimate of electricity consumption for recycled water treatment and distribution. Groundwater extraction, total surface water treatment and conveyance, water distribution, and water storage electricity consumptions were reported in the City's 2015 Urban Water Management Plan and do not have associated energy intensities. These values were multiplied by the PG&E provided electricity emission factor to obtain total emissions. Electricity consumption required for water processing is excluded from electricity sector emissions to avoid double counting.

Processing Step	Volume (MG)	Energy Intensity (kWh/MG)1	Electricity Consumption (MWh) ¹	Emissions (MT CO₂e)	Percent of Emissions
Surface Water					
Treatment and Conveyance	2,227	-	5,863	782	41%
Groundwater					
Extraction	441	-	471	63	3%
Local Supply					
Recycled	2,169	3,466	7,518	1,002	52%
Other Processes					
Distribution	-	-	242	32	2%
Storage	_	-	279	37	2%
Total	4,837		14,374	1,917	100%

Table 18 Energy Use and Emissions by Water Processing Step (2016)

MG = million gallons; kWh = kilowatt-hour; MWh = megawatt-hour

¹ City of Pittsburg. 2016. City of Pittsburg 2015 Urban Water Management Plan. Energy intensities were not provided for all processing steps. Where energy intensities per volume were not provided, total electricity consumption by each process was used to calculate emissions.

Source: City of Pittsburg, 2019. Water Supply and Treatment Report 2005-2018

Surface Water Supply

Volume of water supplied to the incorporated community and municipal operations was provided by the City of Pittsburg. The population served by this water supply was 71,342 in 2016. The City purchases Central Valley Project (CVP) water pumped from the California Delta by Contra Costa Water District (CCWD), its wholesale supplier. According to its 2015 Urban Water Management Plan, the City obtains 85% to 95% of its water supply from CCWD pursuant to a contractual arrangement.

Groundwater Supply

In addition to water supplied by CCWD, approximately 9 percent of the total water supplied by CCWD was sourced from groundwater extracted from two City-owned wells. This water is extracted from the Pittsburg Plain Groundwater Basin. The basin is bounded by Suisun Bay to the north, the Tracy Sub-basin of the San Joaquin Valley Groundwater Basin on the east, and the Clayton Valley Groundwater Basin on the west, as shown in Figure 5 below.

Figure 5 Groundwater Basin Serving the City of Pittsburg

Source: Luhdorff and Scalmanini Consulting Engineers and MWH Global, Inc. (October 2012). *Pittsburg Plain Groundwater Basin Groundwater Management Plan*. Executive Summary, Figure ES-1. Retrieved March 2019 from http://apps.ci.pittsburg.ca.us/sirepub/cache/2/o5dzrgyc1geldijjtxvlkt55/285085703112019053332732.PDF

Surface Water Emissions

Electricity consumption for surface water treatment and conveyance was multiplied by PG&E's electricity emissions factor in 2016 to estimate associated emissions. The provided electricity consumption encompasses energy used in the conveyance of surface water from the Contra Costa Canal to the City's water treatment plant (WTP), and the treatment of this water at the WTP prior to distribution to the City's local service reservoirs.

Groundwater Emissions

Electricity consumption associated with groundwater extraction was multiplied by PG&E's electricity emission factor in 2016 to identify emissions from groundwater extraction. Groundwater in Pittsburg is blended with surface water after extraction and treated at the City's WTP; therefore, treatment energy use of groundwater is included in surface water emissions and only energy associated with extraction is accounted for here. Electricity and associated emissions from distribution of extracted groundwater are included in total water distribution emissions as shown in Table 18. Electricity used by groundwater extraction was excluded from electricity sector emissions to avoid double counting.

Recycled Water Emissions

Recycled water volume was multiplied by recycled water treatment and distribution energy intensity to identify electricity use and associated emissions. No further treatment is assumed for recycled water beyond tertiary treatment at water reclamation facilities. Recycled water is provided for non-potable uses in industrial cooling and irrigation. Recycled water electricity and emissions totals were also excluded from the electricity sector. Figure 6 below shows DDSD's recycled water system in the City of Pittsburg.

Source: City of Pittsburg. June 2016. *City of Pittsburg 2015 Urban Water Management Plan*. Figure 6-1 Recycled Water System, p. 25. Prepared by RMC Water and Environment and City of Pittsburg Water Utilities Department. Accessed March 2018 at http://www.ci.pittsburg.ca.us/Modules/ShowDocument.aspx?documentid=8283

Wastewater

Wastewater treatment processes include both direct and indirect emissions. Direct emissions include combustion of digester gas produced at the wastewater treatment plant (WWTP) and fugitive emissions from processing methods. Digester gas combustion produces CH_4 and N_2O emissions, while process emissions include fugitive CH_4 and/or N_2O , depending on the treatment process utilized. Indirect emissions result from processes related to wastewater collection and treatment, but not emitted directly from the WWTP itself. These include energy use emissions

associated with the collection and treatment of wastewater, as well as fugitive N₂O resulting from additional chemical reactions when effluent discharge reaches a natural watershed.

Wastewater Treatment Servicer

Delta Diablo Sanitation District (DDSD) provides treatment services for the Cities of Pittsburg and Antioch and the unincorporated area of Bay Point. Treatment occurs at a centralized WWTP for which DDSD provided the volume of water treated in 2016, 4.453 million gallons. The total population served by the district was then divided by City of Pittsburg population in 2016 to identify Pittsburg's contribution to DDSD-treated wastewater. Since DDSD's facility emission factors are not known, default ICLEI Community Protocol emission factors were used for calculating wastewater treatment emissions.

The DDSD WWTP provides primary, secondary and tertiary treatment of wastewater. Primary treatment is a mechanical process which utilizes screens, grit chambers and settling tanks to remove trash and settable solids. Secondary treatment utilizes biological processes to convert suspended particles into sludge, which then undergoes anaerobic digestion to break down organic solids. The anaerobic digestion process produces methane gas which is captured and burned to power treatment plant facilities. Secondarily treated water is discharged to the New York Slough without nitrification/denitrification processing. A portion of the wastewater undergoes tertiary treatment, requiring additional chemical and treatment and filtration. This water is recycled and used for industrial cooling and irrigation.

Wastewater Treatment Emissions

The *ICLEI Community Protocol's* "Wastewater 1 alt.", "Wastewater 2 alt." and "Wastewater 8" methods were used to calculate direct emissions from wastewater treatment. "Wastewater 1 alt." and "Wastewater 2 alt." methods calculate CH_4 and N_2O emissions resulting from the combustion of captured digester gas produced by anaerobic digestion of biosolids. These calculations use the default values provided by the *ICLEI Community Protocol* for digester gas generation based on WWTP service population and for efficiency of digester gas combustion. Method "Wastewater 8" accounts for N_2O process emissions in WWTPs which do not support nitrification or denitrification, based on population served by the WWTP. Default values provided by the *ICLEI Community Protocol* for N₂O emissions factors were used, with the assumption that the WWTP received wastewater with high nitrogen loading of industrial or commercial discharge.

Indirect emissions associated with wastewater consumption were calculated using *ICLEI Community Protocol* "Wastewater 12 alt." and "Wastewater 15.1". These calculations include N₂O emissions from effluent discharge and energy use emissions from wastewater collection and treatment modalities. "Wastewater 12 alt" method was used for calculating fugitive N₂O emissions resulting from effluent discharge of secondarily treated wastewater. This calculation used the nitrogen load discharged, 1,500 kg or nitrogen per day provided by DDSD, scaled by the population of Pittsburg, as well as default *ICLEI Community Protocol* values for emission factors. Energy use emissions calculated using method "Wastewater 15.1" utilized default values provided by the *ICLEI Community Protocol* for energy intensities per unit volume of collection and treatment at a centralized WWTP. The DDSD utilizes conventional aerobic treatment for sludge; therefore, only this treatment modality is included in calculations. The treatment energy intensity used for calculations was 2,000 kilowatt-hours per million gallons (kWh/MG), the default for WWTPs with a capacity of 5-20 million gallons per day. The median default value was chosen for collection energy intensity, 280 kWh/MG. Wastewater treatment volumes for 2016 were provided by DDSD and scaled to represent the population of Pittsburg. Table 19 provides emissions by source for both direct and indirect emissions resulting from wastewater treatment.

 Table 19 Wastewater Emissions by Source (2016)

Source	Emissions (MT CO ₂ e)
Direct Emissions	
Anaerobic Digester Gas Combustion	5
Fugitive N2O from Process Emissions	84
Total Direct Emissions	89
Indirect Emissions	
Fugitive N2O from Effluent Discharge	438
Collection Energy	57
Treatment Energy	463
Total Indirect Emissions	958
Total Emissions	1,046
Source: City of Pittsburg, 2019	

Appendix B

2005 Greenhouse Gas Emission Inventory Methodology and Calculations

City of Pittsburg

Greenhouse Gas Emission Inventories Updated 2005 and 2016

Appendix B 2005 Greenhouse Gas Emission Inventory Methodology & Calculations

prepared by

City of Pittsburg Environmental Services

Department 65 Civic Avenue Pittsburg, California 94565

prepared with the assistance of

Rincon Consultants, Inc. 449 14th Street, Suite 303 Oakland, California 94612

July 2019

Table of Contents

Introduction	1
Inventory Scope	2
Inventory Methodology	3
Transportation	3
Energy	7
Solid Waste	8
Water	9
Wastewater	12

Tables

Table 1	Citywide Transportation Emissions and Vehicle Miles Traveled (2005)	
Table 2	Residential VMT by Origin-Destination in the City of Pittsburg (2005)4	
Table 3	Commercial VMT and Emissions the City of Pittsburg (2005)5	
Table 4	Electric Vehicle Emission Variables and Consumption (2005)5	
Table 5	Marine Vessel Emissions (2005)6	
Table 6	Pittsburg/Bay Point Passenger Rail Emissions (2005)7	
Table 7	Citywide Electricity Emissions Factors (2005)8	
Table 8	Citywide Natural Gas Use and Emissions (2005)8	
Table 9	Community-Generated Solid Waste, Recycling and Alternative Daily Cover (2005)	.9
Table 10	Water Energy Intensities and Emissions Factors (2005)10	
Table 11	Water Supplied to Incorporated Community and Municipal Operations (2005) 10	
Table 12	Water Emissions by Sourcing and Processing Step (2005)11	
Table 13	Energy Use and Emissions by Water Processing Step (2005)	
Table 14	Wastewater Emissions by Source (2005)13	

Introduction

This appendix outlines the methodologies followed to estimate the greenhouse gas (GHG) emissions for the incorporated City of Pittsburg for the 2005 calendar year. Baseline emissions in 2005 were estimated for both the incorporated communities within Pittsburg as well as those emissions resulting from City municipal operations. As for the 2016 inventory update, the 2005 GHG inventory relies on activity data for each of the primary emissions sectors including electricity, natural gas, transportation, waste and water. The majority of this data is reported in the original inventory published in 2008; however, some sectors have been updated with new methodologies and more complete data as available, described below. The following Appendix provides a description of the specific methodologies, assumptions, and variables used for the 2005 GHG emissions inventory update.

Throughout this report, rounding is often required in calculations and tables. Values are rounded to the nearest integer of a higher order of magnitude. No rounding is performed in the intermediary steps of the calculation. As a result of rounding, some totals may differ slightly from the values summed.

Inventory Scope

The 2005 updated baseline inventory's geographical scope, data collection protocols, included and excluded emission sectors and GHG global warming potentials are consistent with those of the 2016 inventory, described in *Inventory Scope* of Appendix A. Notably, off-road transportation and equipment were not included in the originally published 2005 inventory, but this sector has been added to this inventory update due to data availability and to provide a more complete comparison to 2005 communitywide activity.

Inventory Methodology

The following section describes the methodologies used for the municipal and community-wide inventory updates. GHG emissions are calculated by multiplying activity data (kilowatt-hours of electricity, metric tons of solid waste) by an emission factor. Calculations are adapted with regional and City-specific data where available, as described below. Sectors included in the communitywide inventory are electricity, natural gas, on-road, off-road, passenger rail and marine transportation, solid waste, water, and wastewater, as shown in Figure 1 of the Greenhouse Gas Inventory Update. Sectors included in the municipal inventory are employee commutes and vehicle fleet, energy, waste, water and wastewater, as shown in Figure 3 of the Greenhouse Gas Inventory Update.

Transportation

On-Road Communitywide Transportation

The originally published 2005 inventory relied on a Contra Costa Transit Authority (CCTA) travel model to estimate on-road vehicle miles traveled (VMT) and emissions. The CCTA travel model is currently undergoing updates to be complete in late 2019. CCTA staff recommend using the Metropolitan Transportation Commission (MTC) model for VMT, as outputs from the two models have increasingly differed with updates in recent years. For comparison between the 2005 and 2016 inventories, 2005 on-road transportation emissions were thus updated using an MTC model as described below. The following methodology matches that described in Appendix A for the 2016 inventory update.

On-road transportation data was obtained for residential, commercial and other vehicles by identifying average emissions and VMT per category, as described in the *Transportation* section of Appendix A. Residential travel composed the majority of on-road transportation-related emissions in the City of Pittsburg in 2005, with 71% of emissions.

Vehicle Category	Emissions (MT CO2e/yr)
Residential	131,652
Commercial	47,125
Other	5,542
Total	184,310
Daily VMT	832,276
Annual VMT	303,780,604
Average Emissions/Mile (g CO _{2e} /mi)	607 ¹

Table 1	Citywide Trans	portation Emissions	and Vehicle Miles	Traveled (2005)

Note: VMT = vehicle miles traveled

¹ Includes electric vehicles. Excluding electric vehicles, emissions per mile are 0.2 g CO₂e/mi less.

Sources: CARB EMFAC 2007 tool; Personal communication with Harold Brazil, Bay Area Metro, 2/28/2018; BAAQMD VMT Data Portal 2015

Vehicle Miles Traveled

The City of Pittsburg Emissions Inventory estimated on-road vehicle emissions using the origindestination model recommended in the ICLEI Community Protocol to establish vehicle miles traveled (VMT). Refer to *Transportation: Vehicle Miles Traveled* in Appendix A for description of the origin-destination model.

VMT was separated by Residential, Commercial and Other vehicle category as defined by the MTC VMT model using the same methodology described the the *Transportation* section of Appendix A. VMT in 2005 per the origin-destination model are shown in Table 2 below.

Origin-Destination of Trips	VMT
Internal-Internal	78,126
Internal-External/External-Internal	1,267,562
External-External	110,098,642
Weighted Jurisdictional	711,907
Source: BAAQMD VMT Data Portal 2015	

Table 2 Residential VMT by Origin-Destination in the City of Pittsburg (2005)

To account for different emission factors of combustion engines and electric vehicles (EVs) among residential vehicles¹, residential EV VMT was also calculated. Countywide EV VMT in 2005 was provided by the EMFAC 2014 mobile source model and scaled by population to City level. EV trips accounted for less than one percent of VMT in 2005.

Vehicle Mix and Emissions

Residential and Other sector vehicle emissions data were derived from the CARB 2014 EMFAC Mobile Source Emission Inventory model using City-based emission factors, the model mix of all vehicle classes (classes are identified in EMFAC model version 2011), model years, speed bins, and associated fuel types for the City of Pittsburg in 2005. Methodologies are further described in *Transportation: Vehicle Mix and Emissions* in Appendix A.

Commercial sector vehicle emissions data was provided by staff at Bay Area Metro utilizing an MTC transportation model, also described in Appendix A. The City of Pittsburg's commercial vehicle emissions for 2005 are shown in Table 3 below.

¹ EVs are included in EMFAC vehicle categories LDA and LDT1, both residential categories in this inventory (see Table 4).

Transportation Variable	Quantity		
City LEHD Share	6.3%		
Countywide Emissions/Day (MT CO ₂ e)	2,051		
Countywide VMT/Day (miles)	1,584,529		
Citywide Emissions/Day (MT CO ₂ e)	129		
Citywide VMT/Day (miles)	99,764		
Source: Personal communication with Harold Brazil, Bay Area Metro, 2/28/2018			

Table 3 Commercial VMT and Emissions the City of Pittsburg (2005)

The electric vehicle (EV) emission factor was derived from PG&E's electricity emissions factor for 2005 provided by the Institute for Local Governments. This methodology is also consistent with that for the 2016 inventory and described in Appendix A. The inventory quantification variables, data sources, and total emissions for EVs in 2005 are shown in Table 4 below.

 Table 4
 Electric Vehicle Emission Variables and Consumption (2005)

Inventory Variable	Variable/Quantity	Data Source	
Electricity Emission Factor	0.222 MT CO ₂ /MWh	ILG ¹	
EV Fuel Economy of Light-Duty Vehicles	35 kWh/100 mi	U.S. DOE Fuel Economy Database ² and Alternative Fuel Data Center ³	
EV Emissions per mile	77.8 g CO₂e/mi	Calculated (EF x Fuel Economy)	
EV Annual VMT in Incorporated City	116,549 VMT	CARB 2014 EMFAC Model	
Total Annual EV Emissions	9.1 MT CO ₂ e	Calculated (EF x Consumption x VMT)	
¹ California Institute for Local Government (ILG) 2011, Greenhouse Gas Emissions Eastors Info Sheet, Accessed March 2019 at			

¹ California Institute for Local Government (ILG) 2011. Greenhouse Gas Emissions Factors Info Sheet. Accessed March 2019 a https://www.ca-ilg.org/sites/main/files/file-attachments/ghg_emission_factor_guidance.pdf

² U.S. DOE. (2018). Fuel Economy Database. "Compare Electric Vehicles Side by Side." Accessed September 2018 at https://www.fueleconomy.gov/feg/evsbs.shtml

³ U.S. DOE. (2018). Alternative Fuel Data Center. "Charging Plug-in Electric Vehicles at Home." Accessed September 2018 at https://www.afdc.energy.gov/fuels/electricity_charging_home.html

On-Road Municipal Transportation

Municipal Commute Emissions

City employee commute data was provided by the City of Pittsburg and sourced from an employee survey conducted in November 2008 which estimated 2005 full-time employee commute patterns and 2008 seasonal employee commute patterns as a proxy for 2005. One hundred twenty-five employees participated in the commute survey, including approximately 38% of full-time and 5% of seasonal staff. Employees commuted an average of 22 miles per day, with the majority driving alone five days per week. Total emissions were 887 MT CO₂e. Details of methodology are provided in the City of Pittsburg 2005 Inventory Appendix B: Data Sources.

Municipal Vehicle Fleet Emissions

City-owned and operated vehicle fleet data for 2005 was provided by the City of Pittsburg's purchase and data logs. Emissions were calculated based on volume of gasoline and diesel fuel purchased and consumed by the Environmental Services Dept., police and other municipal fleet

vehicles. The City reported 105,000 gal of gasoline and 27,000 gal of diesel use in 2005, totaling 1,207 MT CO₂e. Details of methodology are provided in the City of Pittsburg 2005 Inventory Appendix B: Data Sources.

Marine Transportation

Marine vessels operating at the City-owned Port of Pittsburg included two lessees in 2005—Koch Carbon and USS POSCO, steel manufacturer. These operators use the port to import materials and export goods periodically throughout the year. The City of Pittsburg provided marine vessel number of port calls from lessees. The CARB provided an estimate of combined vessel transportation emissions by water segment for lessees, while port operations (i.e., hoteling, berthing) were based on estimates from the nearby Carquinez and Richmond ports. Because shore-power electricity was provided to USS Posco during hoteling, its hoteling emissions were included in the electricity sector. Emissions for port operations are shown in Table 5 below. Details of methodology are provided in the City of Pittsburg's original 2005 Inventory Appendix B, *Data Sources*, and Appendix F, *Secondary Emission Sources*.

Vessel Operation Phase	Emissions (MT CO ₂ e)	
Koch Carbon		
Number of Calls (Annual)	20	
Hoteling Emissions (MT CO ₂ e)	1,863	
Maneuvering Emissions (MT CO ₂ e)	44	
Annual Emissions (MT CO ₂ e)	1,907	
USS Posco		
Number of Calls (Annual)	25	
Hoteling Emissions (MT CO ₂ e)	0	
Maneuvering Emissions (MT CO ₂ e)	54	
Annual Emissions (MT CO ₂ e)	54	
Transit Emissions (MT CO ₂ e)	175	
Total Emissions (MT CO ₂ e)	2,136	

Table 5	Marine	Vessel	Emissions	(2005))
Tuble 5	manne	V C33C1	LIIII33IOII3	(2000)	,

Passenger Rail Transportation

The originally published 2005 inventory included all Bay Area Rapid Transit (BART) emissions in the commercial electricity sector, as BART energy is sourced largely from electricity. To provide more accurate data for 2005 and to compare changes in emissions to 2016, communitywide passenger rail emissions data for 2005 was provided by Bay Area Rapid Transit (BART) in this inventory update. BART had one station in 2005, Pittsburg/Bay Point, located near the intersection of Highway 4 and Bailey Road in central Pittsburg, which began serving passengers in December 1996. BART performs an annual energy and passenger rail usage analysis. In 2005, emissions by station were not available; instead, available 2007 systemwide emissions and available 2005 and 2007 ridership by station were used to estimate 2005 emissions. In 2005, the Pittsburg/Bay Point station accounted for and estimated 1.6% of the BART systemwide usage. BART emissions and station usage are shown in Table 6 below.

Inventory Variable	Value	
Annual Ridership at Pittsbug/Bay Point Station (passengers exiting)	4,818	
Percent of BART Systemwide Emissions	1.6%	
BART Systemwide Emissions (MT CO ₂ e)1	75,480	
Total Station Emissions (MT CO ₂ e)	163	

Table 6 Pittsburg/Bay Point Passenger Rail Emissions (2005)

¹ 2007 emissions of 82,438 MT CO2e and the change in systemwide ridership from 2005 to 2007 used to estimate 2005 total emissions Sources: Personal communication with Norman Wong, BART, January 25, 2019; BART 2008. BART Fiscal Year Weekday Average Exists, FY01-FY08.

Energy

Electricity

Electricity use within the City of Pittsburg includes residential and commercial consumption for the community-wide inventory, and government-owned building consumption for the municipal inventory. Because electricity is an indirect, Scope 2 emissions source, this category includes emissions that may occur outside the City bounds at regional power plants. Electricity consumed for water treatment and distribution was excluded from the electricity use category and instead incorporated in the water and wastewater source category. Electricity consumed for electric vehicles operating entirely within the City and half of electric vehicles operating partially within the City were excluded from the electricity use category and instead incorporated in the transportation source category as part of the residential on-road sector.

Electricity use was provided by PG&E in the form of kilowatt-hours per year (kWh/yr) for the residential, commercial and industrial customer groups for 2005. As described in the *Electricity* section of Appendix A, the California Public Utilities Commission (CPUC) Decision 14-05-016 has made industrial energy data no longer publicly available.² To compare energy sector emissions between the two inventory years consistently, industrial data originally provided by PG&E and reported in the 2005 inventory is excluded from this inventory update. Details of electricity methodology are provided in the City of Pittsburg 2005 Inventory Appendix B, *Data Sources* and Appendix D, *PG&E Power Mix*. Transmission and distribution losses in 2005 were determined to be 1.057 from the statewide average loss rate of 5.4%, as a PG&E-specific factor was unavailable.³

Electricity for City municipal administration and operations was provided by the City of Pittsburg's energy management software. Municipal emissions were calculated similarly to communitywide emissions, multiplying by the PG&E emission factor in the City of Pittsburg service area. Table 7 shows the electricity usage and emissions in the City of Pittsburg in 2005 for communitywide and municipal activities.

² California Public Utilities Commission. 2014. Decision 14-05-016. Decision Adopting Rules to Provide Access to Energy Usage and Usage-Related Data while Protecting Privacy of Personal Data. Accessed from

http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M090/K845/90845985.PDF

³Wong, Lana. 2011. A Review of Transmission Losses in Planning Studies. California Energy Commission. CEC-200-2011-009. Accessed from https://www.energy.ca.gov/2011publications/CEC-200-2011-009/CEC-200-2011-009.pdf

	2003)	
Inventory Variable	Quantity	Data Source
Commercial Energy Consumption (kWh)	187,429,876	PG&E
Residential Energy Consumption (kWh)	135,750,067	PG&E
Commercial Electricity Emissions (MT CO ₂ e)	41,901	PG&E
Residential Electricity Emissions (MT CO ₂ e)	30,348	PG&E
Communitywide Electricity Emissions (MT CO ₂ e)	72,249	
Municipal Building Electricity Consumption (kWh)	3,722,239	City data summaries
Streetlighting Electricity Consumption (kWh)	2,437,026	City data summaries
Municipal Electricity Emissions (MT CO ₂ e)	1,377	

Table 7 Citywide Electricity Emissions Factors (2005)

Natural Gas

Natural gas use within the City of Pittsburg includes residential and commercial consumption for the communitywide inventory, and government-owned building consumption for the municipal inventory. Because natural gas is a direct, Scope 1 emissions source, with all emissions occurring at the point of consumption (such as indoor furnaces and stoves), no emissions external to the incorporated City must be considered.

Natural gas use was provided by PG&E in the form of therms per year for the residential, commercial and industrial customer groups for 2005. As described above and in the *Energy* section of Appendix A, CPUC Decision 14-05-016 made 2016 industrial energy data no longer publicly available. To compare energy sector emissions between the two inventory years consistently, industrial data originally provided by PG&E and reported in the 2005 inventory is excluded from this inventory update. Details of natural gas methodology are provided in the City of Pittsburg 2005 Inventory Appendix B, *Data Sources*. Total usage and emissions for the community and municipal operations are shown in Table 8 below.

Inventory Variable	Quantity	Data Source
Commercial Consumption (therms)	18,877,308	PG&E
Residential Consumption (therms)	8,239,892	PG&E
Commercial Emissions (MT CO ₂ e)	100,963	PG&E
Residential Emissions (MT CO ₂ e)	44,070	PG&E
Communitywide Emissions (MT CO ₂ e)	145,034	Calculated
Municipal Building Consumption (therms)	100,501	City data summaries
Municipal Emissions (MT CO ₂ e)	538	Calculated

Table 8 Citywide Natural Gas Use and Emissions (2005)

Solid Waste

Emissions from solid waste include CO_2 resulting from decomposition in aerobic environments and CH_4 resulting from decomposition in anaerobic environments. GHG tailpipe emissions from waste collection and management vehicles are excluded from this sector and incorporated in the mobile

sources sector. Details of waste sector methodology are provided in the City of Pittsburg 2005 Inventory Appendix B, *Data Sources*.

Community-Generated Solid Waste

Communitywide solid waste generated in 2005 was provided by the City of Pittsburg and includes all community-generated waste regardless of whether or not the waste disposed at a facility located within incorporated City bounds. The mix of municipal solid waste was provided by CalRecycle's 2004 Statewide Waste Characterization Study. While the original 2005 inventory used an IPCC recommended methane recovery rate of 60%, the current ICLEI Protocol recommends a recovery rate of 70%. Therefore, emissions were recalculated for comparability with the 2016 inventory, following the method described in Section 4.4 of Appendix A and utilizing 2005 waste generation data. Total waste generated and emissions from solid waste in 2005 are shown in Table 9 below.

Table 9Community-Generated Solid Waste, Recycling and Alternative Daily Cover(2005)

Waste Totals	Quantity
Solid Waste Entering Landfills (wet short tons)	55,559
Special Waste (MT)	9,354
Municipal Alternative Daily Cover (MT)	11,383
Biomass Incineration (MT)	13,594
Municipal Recycling (MT)	3,660
Municipal Composted (MT)	1,976
Total Municipal Emissions (MT CO2e)	20,101
Municipal Solid Waste (wet short tons)	611
Municipal Emissions (MT CO2e)	206
Source: City of Pittsburg, 2008	

In addition to landfilled waste, the community has implemented various residential and community composting, recycling, and waste diversion programs. Many of these began in 1990 and others began later in the decade. They include curbside pick-up, self-hauling, and facility drop-off programs.

Municipally-Generated Solid Waste

Total waste disposed by municipal facilities in 2005 was provided by Garaventa Enterprise and totaled 611 MT, resulting in emissions of 206 MT CO₂e, also shown in Table 9. Similar to community waste diversion, municipal facilities participated in composting, recycling and biomass waste diversion in 2005.

Water

Water emissions come from extraction, conveyance, treatment, distribution and storage of water to the incorporated community and municipal operations. Emissions vary by water origin and distance to treatment facility, water treatment process and equipment used at the facility. Emissions

resulting from water use at City facilities are included in this total. Emissions from electricity used for pumping, storage and treatment are also included in water sector emissions and excluded from electricity sector emissions.

Energy intensities, emission factors and sources are shown in Table 10 below.

Table 10	Water Energy	Intensities and	Emissions Factors	(2005)
----------	--------------	-----------------	--------------------------	--------

Inventory Variable	Quantity	Data Source	
Water Consumption	7,290 MG	Pittsburg 2010 UWMP and 2015 UWMP	
Municipal Water Treatment	3,526 MG	Pittsburg 2005 UWMP	
Electricity Emissions Factor	0.000222 MT CO ₂ e/ kWh	PG&E	
Extraction Energy Intensity	1,069 kWh/MG	Pittsburg 2015 UWMP	
Treatment & Conveyance Energy Intensity	2,198 kWh/MG	Pittsburg 2015 UWMP	
Distribution Energy Intensity	91 kWh/MG	Pittsburg 2015 UWMP	
Storage Energy Intensity	105 kWh/MG	Pittsburg 2015 UWMP	
Recycled Water Energy Intensity	3,466 kWh/MG	Pittsburg 2015 UWMP	
Communitywide GHG Emissions	4,708 MT CO ₂ e	Calculated (EF x Community Consumption)	
Municipal GHG Emissions	1,413 MT CO ₂ e	Calculated (EF x Municipal Consumption)	

The City of Pittsburg's Urban Water Management Plans (UWMPs) provided data on water supply to the incorporated community and City municipal facilities for 2005. To identify municipal water use, the proportion of municipal to communitywide use in 2016 provided by the City was multiplied by the 2005 total water supply. To identify municipal water use by source, the calculated total municipal supply was multiplied by proportion by source communitywide in 2005 provided in the UWMPs. In 2005, the City population served was 62,600.

Step	Communitywide Quantity (MG/Year)	Municipal Quantity (MG/Year)
Groundwater	326	7
Surface Water	3,764	80
Recycled Water	3,200	68
Total Supplied	7,290	155
Percent Municipal Use	2.12%	
Per Capita Supply (gal/person/day)	319	
MG = million gallons		
Per Capita Supply = Total Water Supplied/Populat	ion Served/365.25	
Source: City of Pittsburg, 2019. Water Supply and	Treatment Report 2005-2018.	

Recycled water composes the majority of water sector emissions, followed by treatment and conveyance and extraction, while distribution and storage compose only a small contribution to water processing emissions. Table 12 below shows the contribution of water sourcing and processing emissions by step.

5 5	5 1 . ,	
Processing Step	Emissions (MT CO ₂ e)	
Groundwater Extraction	77	
Surface Water Treatment and Conveyance	1,994	
Storage	95	
Distribution	82	
Recycled Water Use	2,460	
Total	4,708	
Source: City of Pittsburg 2005, 2010 and 2015 UWMPs		

Table 12 Water Emissions by Sourcing and Processing Step (2005)

Table 13 shows water volume in each step of processing, along with energy intensity per volume water, electricity use and emissions. Groundwater extraction, surface water treatment and conveyance, water distribution, water storage and water recycling electricity consumptions were reported in the City's 2015 Urban Water Management Plan and used as a proxy for 2005. Water volume multiplied by energy intensity allowed for an estimate of electricity consumption for each step. These values were multiplied by the PG&E provided electricity emission factor to obtain total emissions. Electricity consumption required for water processing is excluded from electricity sector emissions to avoid double counting.

	-				
Processing Step	Volume (MG)	Energy Intensity (kWh/MG) ¹	Electricity Consumption (MWh) ¹	Emissions (MT CO2e)	Percent of Emissions
Surface Water					
Treatment and Conveyance	4,090	2,197	8,988	1,994	42%
Groundwater					
Extraction	326	1,069	348	77	2%
Local Supply					
Recycled	3,200	3,466	11,091	2,460	52%
Other Processes					
Distribution	4,090	91	372	82	2%
Storage	4,090	105	428	95	2%
Total			21,227	4,708	100%

Table 13 Energy Use and Emissions by Water Processing Step (2005)

MG = million gallons; kWh = kilowatt-hour; MWh = megawatt-hour

¹ 2015 UWMP factors were used as these were not provided in previous UWMPs.

Source: City of Pittsburg 2005, 2010, 2015 Urban Water Management Plans

Surface Water Supply

Volume of water supplied to the incorporated community was provided by the City of Pittsburg's 2005 Urban Water Management Plan (UWMP) for surface water supply. The City purchases Central Valley Project (CVP) water pumped from the California Delta by Contra Costa Water District (CCWD), its wholesale supplier.

Groundwater Supply

In addition to water supplied by CCWD, approximately 4.5 percent of the total water supplied by CCWD was sourced from groundwater extracted from City-owned wells. This water is extracted from the Pittsburg Plain Groundwater Basin, shown in Figure 5 in Appendix A.

Surface Water Emissions

Surface water volume provided in the City's 2005 UWMP was multiplied by treatment, conveyance and distribution energy intensities provided in the City's 2015 UWMP and by PG&E's electricity emissions factor in 2005 to estimate associated surface water emissions. The 2015 UWMP was provided as a proxy for 2005 energy intensity factors since these were not provided in the 2005 UWMP. The provided conveyance and distribution intensity factor encompasses energy used in the conveyance of surface water from the Contra Costa Canal to the City's water treatment plant (WTP), and the treatment of this water at the WTP prior to distribution to the City's local service reservoirs.

Groundwater Emissions

Emissions associated with groundwater extraction were calculated by multiplying PG&E's electricity emission factor in 2005 with extraction volume based on the 2005 UWMP and with the groundwater extraction energy intensity provided in the 2015 UWMP. Groundwater in Pittsburg is blended with surface water after extraction and treated at the City's WTP; therefore, treatment energy use of groundwater is included in surface water emissions and only energy associated with extraction is accounted for here. Electricity and associated emissions from distribution of extracted groundwater are included in total water distribution emissions as shown in Table 13. Electricity used by groundwater extraction was excluded from electricity sector emissions to avoid double counting.

Recycled Water Emissions

Recycled water volume was based on the 2010 UWMP and multiplied by recycled water energy intensity provided in the 2015 UWMP to identify electricity use and associated emissions. No further treatment is assumed for recycled water beyond tertiary treatment at water reclamation facilities. Recycled water is provided for non-potable uses in industrial cooling and irrigation. Recycled water electricity and emissions totals were also excluded from the electricity sector.

Wastewater

Wastewater treatment processes include both direct and indirect emissions. Direct emissions include combustion of digester gas produced at the wastewater treatment plant (WWTP) and fugitive emissions from processing methods. Indirect emissions result from processes related to wastewater collection and treatment, but not emitted directly from the WWTP itself. These are further described in the *Wastewater* section of Appendix A.

Delta Diablo Sanitation District (DDSD) provides treatment services for the Cities of Pittsburg and Antioch and the unincorporated area of Bay Point. Treatment occurs at a centralized WWTP for which DDSD provided the volume of water treated in 2005, 4.453 million gallons. The methodology for identifying Pittsburg's contribution to DDSD-treated wastewater are further described in Appendix A, *Wastewater Treatment Servicer*, along with DDSD's wastewater treatment methods. Methodology for 2005 wastewater treatment emissions is consistent with that of the 2016 inventory and also described in the *Wastewater Treatment Emissions* section of Appendix A. Table 14 provides emissions by source in 2005 for both direct and indirect emissions resulting from wastewater treatment.

Table 14 Wastewater Emissions by Source (2005)

Source	Emissions (MT CO ₂ e)
Direct Emissions	
Anaerobic Digester Gas Combustion	4
Fugitive N ₂ O from Process Emissions	75
Total Direct Emissions	79
Indirect Emissions	
Fugitive N ₂ O from Effluent Discharge	438
Collection Energy	111
Treatment Energy	567
Total Indirect Emissions	1,116
Total Emissions	1,195
Source: City of Pittsburg, 2019	